Authors

Mechanical Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Allahabad 211004, India

Abstract

Ni-rich NiTi shape memory alloys (SMAs) are gaining more prominence compared to near equiatomic NiTi SMAs due to their excellent superelasticity and shape memory properties. The low density and high work output compared to steels make them an excellent choice for automotive and aerospace industries. The study explores the effect of machining parameters, namely, pulse off time, pulse on time, spark gap voltage, wire tension and wire feed rate on material removal rate (MRR), surface roughness (Ra), and surface morphology of Ni-rich NiTi SMA. The experimental results reveal that MRR & Ra increase with the increase in pulse on time while decrease with the increase in pulse off time and spark gap voltage. Wire feed rate and wire tension have negligible influence on MRR and SR. Surface defects, namely, recast layer, micro-cracks & voids were examined through scanning electron microscope (SEM). Energy dispersive X-ray (EDS) and X-ray diffraction (XRD) analysis results reveal the material transfer from wire electrode and the dielectric fluid on the machined surface. Copyright © 2018 VBRI Press.

Keywords

1.Jani, J.M.; Leary, M.; Subic, A.; Gibson, M. A.; MaterDesign,
2014, 56, 1078.

DOI: 10.1016/j.matdes.2013.11.084

2.Marchand, C.;Heim, F.;Durand, B.;Chafke, N.;Mater. Manuf.
Processes, 2011, 26, 181.

DOI:10.1080/10426914.2010.491695

3.Manjaiah, M.;Narendranath, S.;Basavarajappa,S.;T Nonferr
Metal Soc.,2014, 24, 12.

DOI:
10.1016/S1003-6326(14)63022
4.Petrini,L.;Migliavacca,F.;Journal of Metallurgy2011, 15.

DOI:10.1155/2011/501483.

5.Ramachandran, B.;Chen,C.H.;Chang,P.C.;Kuo, Y.K.; Chien,
C.; Wu, S. K.;Intermetallics 2015, 60, 79.

DOI:10.1016/j.intermet.2015.02.004

6.Karimzadeh M, Aboutalebi MR, Salehi MTAbbasi S.M.;
Morakabati M.;Mater. Manuf. Processes,2016, 31, 1014.

DOI:
10.1080/10426914.2015.1048468
7.Mandal, A.; Dixit, A.R.; Das, A.K.; Mandal, N.;Mater. Manuf.
Processes,2016, 31,860-866.

8.Pramanik, A.;Islam,M.N.;Boswell, B.;Basak,A.K.;Dong, Y.;
Littlefair, G.;Proc IMechE, Part B: J Engineering Manufacture,
2016.

DOI:10.1177/0954405416662079
9.Giridharan,A.;Samuel,G.L.;Proc IMechE, Part B: JEngineering
Manufacture,2015, 230, 2064.

DOI:10.1177/0954405415615732

10.Rao,M.S.;Venkaiah,N.;Proc IMechE, Part B: J Engineering
Manufacture, 2016.

DOI:10.1177/0954405416654092

11.Gupta, K.;Jain,N.K.;J. Mater. Manuf. Processes,2013, 28,
1153.

DOI:10.1080/10426914.2013.792422

12.Lin, H.C.; Lin, K.M.; Chen, Y.C.; J. Mater. Process. Technol,.
2000,105, 327.

DOI:10.1016/S0924-0136(00)00656-7

13.Weinert, K.; Petzoldt, V.; Kotter, D.; CIRP Annals-Manufacturing
Technology,2004, 53, 65.

DOI: 10.1016/S0007-8506(07)60646-5

14.Guo Y.; Klink, A.; Fu, C.; Snyder, J.CIRP Annals Manufacturing
Technology,2013,62, 83.

DOI: 10.1016/j.cirp.2013.03.004

15.Hsieh, S. F.; Chen, S. L.; Lin, H. C.; Lin, M. H.; Chiou, S. Y.;
INT J MACH TOOL MANU.;2009,49, 509.

DOI:10.1016/j.ijmachtools.2008.12.013

16.Manjaiah, M.; Narendranath, S.; Basavarajappa, S.; Gaitonde, V.
N.;Trans. Nonferrous Met. Soc. China, 2014,24, 3201.

DOI: 10.1016/S1003-6326(14)63461-0

17.Manjaiah M.; Narendranath, S.; Basavarajappa, S.;Silicon2016, 8,
467.

DOI: 10.1007/s12633-014-9273-4

18.Liu, J.F.;, Li, L.; Guo, Y.B..;Procedia CIRP,2014,13, 137.

DOI: 10.1016/j.apsusc.2014.04.146

19.Liu, J. F.; Guo, Y.B., Butler, T.M.; Weaver, M. L.;Mater Design,
2016,109, 1.

DOI:
10.1016/j.matdes.2016.07.063
20.Manjaiah, M., Narendranath, S.; Basavarajappa, S.; Gaitonde V.N.;
Precis. Eng. 2015; 41, 68.

DOI:10.1016/j.precisioneng.2015.01.008