Document Type : Research Article
Authors
Department of Electronic Science, University of Calcutta, Kolkata 700009, India.
Abstract
Vertically oriented ZnO nanowires are grown on p-Si substrate by employing two-step sequential chemical bath deposition technique. The ZnO nanowire exhibits n-type doping due to the presence of oxygen vacancies. The electrical characterizations of n-ZnO NWs/p-Si heterojunction diodes exhibit a self-rectifying, threshold resistive switching behavior. Such switching behavior is explained by oxygen vacancy assisted conducting filament formation mechanism. The relevant charge transport is governed by TC-SCLC and multistep recombination-tunneling processes through the interface traps. Threshold-voltage for resistive switching is observed to be increasing with increasing bias sweep rate. The device shows superior memory endurance for forward and reverse voltage sweep of 50 cycles in fast sweep mode. The ratio of HRS to LRS resistances shows one order of difference. The retention time of such resistive switching memory is recorded to be 4000 seconds, suggesting its non-volatile functionality. Thus, the n-ZnO NWs/p-Si heterojunction can be employed for fabricating promising non-volatile memory devices with excellent endurance and retentions. Copyright © 2018 VBRI Press.
Keywords
R.; Waser,R.;Adv. Funct. Mater., 2011, 21, 4487.
DOI:10.1016/S1002-0071(12)60001-X
2.Russo,R.; Ielmini,D.; Cagli,C.; Lacaita,A.L.;IEEE Trans.
Electron Devices., 2009, 56, 186.
DOI:10.1109/TED.2008.2010583
3.Waser,R.; Aono,M.;Nat. Mater., 2007, 6, 833.
DOI:10.1038/nmat2023
4.Kim,K.M.; Jeong,D.S.; Hwang,C.S.;Nanotechnology., 2011,
22, 254002.
DOI:10.1088/0957-4484/22/25/254002
5.Lin,C.-Y.;Wu,C.-Y.;Wu,C.-Y. ;Tseng,T.-Y. ;Hu,C. ;J.Appl.
Phys., 2007, 102, 94101.
DOI:10.1063/1.2802990
6.Lin,C.-Y. ; Lee,D.-Y.; Wang,S.-Y. ;Lin, C.-C.; Tseng,T.-
Y.;Surf. Coatings Technol.,2008, 203, 628.
DOI:10.1016/j.surfcoat.2008.06.133
7.Zhang,J.; Yang,H., Zhang,Q.; Dong,S.;Luo,J.K.; Appl. Phys.
Lett., 2013, 102, 12113.
DOI:10.1063/1.4774400
8.Chen,C.; Pan,F.;Wang,Z.S.; Yang,J.;Zeng,F.;J. Appl.
Phys.,2012,111.
DOI:10.1063/1.3672811
9.Chang,W.-Y. ;Lai, Y.C. ; Wu,T.B. ;Wang,S.F.;Chen,F.;Tsai,
M.J. ;Appl. Phys. Lett., 2008, 92, 022110.
DOI:10.1063/1.2834852
10.Acharyya,D.; Hazra,A.; Dutta,K.;Gupta,R.K.; Bhattacharyya,
P.;Semicond. Sci. Technol., 2013, 28, 125001.
DOI:10.1088/0268-1242/28/12/125001
11.Wang,H.; Zou,C.; Zhou,L.; Tian,C., Fu, D.;Microelectron.
Eng.,2012, 91, 144.
DOI:10.1016/j.mee.2011.05.037
12.Wang,Z.L.;J. Phys. Condenced Matter., 2004, 16, R829.
DOI:http://dx.doi.org/10.1088/09538984/16/25/R01
13.Chicot,G.; Muret,P.;Santailler,J.-L.;Feuillet,G.; Pernot,J.;J.
Phys. D. Appl. Phys., 2014, 47, 465103.
DOI:10.1088/0022-3727/47/46/465103
14.Wan,H.; Ruda,H.E.;J. Mater. Sci. Mater. Electron., 2010, 21,
1014.
DOI:10.1007/s10854-010-0118-7
15.Li,S.Y.; Lee, C.Y.; Tseng,T.Y.;J. Cryst. Growth., 2003, 247,
357.
DOI:10.1016/S0022-0248(02)01918-8
16.Isakov,I.; Panfilova,M.;Sourribes,M.J.L.;Warburton,P.A.;Phys.
Status Solidi Curr. Top. Solid State Phys.,2013,10, 1308.
DOI:10.1002/pssc.201200940
17.Chiou,W.;Wu,W.; Ting,J.;Diam. Relat. Mater., 2003, 12, 1841.
DOI:10.1016/S0925-9635(03)00274-7
18.Ahn,S.E.; Ji,H.J.; Kim, J., Kim,G.T.;Bae,C.H.;Park,S.M.;
Kim,Y.K.;Ha,J.S.;Appl. Phys. Lett., 2007,90, 153106.
DOI:10.1063/1.2721289
19.McPeak,K.M.;Le,T.P.;Britton,N.G.;Nickolov,Z.S.;Elabd,
Y.A.; Baxter,J.B.;Langmuir., 2011, 27, 3672.
DOI:10.1021/la105147u
20.Das,A.; Kushwaha,A.; Sivasayan,R.K.; Chakraborty,S.; Dutta,
H.S.; Karmakar,A.; Chattopadhyay,S.; Chi,D.;Dalapati,G.K.;
J. Phys. D. Appl. Phys., 2016, 49, 145105.
DOI:10.1088/0022-3727/49/14/145105
21.Paul,S.;Das,A.;Palit,M.;Bhunia,S.;Karmakar,A.;
Chattopadhyay,S.;Adv. Mater. Lett.,2016,7, 610.
DOI:10.5185/amlett.2016.6298
22.Dong,J.-J.;Zhen,C.-Y.; Hao,H.-Y.;Xing,J.;Zhang,Z.-L.;
Zheng,Z.-Y.;Zhang,X.-W.;Nanoscale Res. Lett., 2013, 8, 378.
DOI:10.1186/1556-276X-8-378
23.Paul,S.;Das, A.; Chakraborty,A.;Chakraborty,B.; Palit,M.;
Chattopadhyay, D.;Chattopadhyay,S.; 1st Int. Sci. Technol.
Congr.,Elsevier Publications, 2014, 467.
24.Das,A.; Palit,M.; Paul,S.; Chowdhury, B.N.;Dutta,H.S.;
Karmakar,A.; Chattopadhyay,S.;Appl. Phys. Lett., 2014, 105, 2.
DOI:10.1063/1.4893944
25.Qi,J.;Olmedo,M.;Zheng,J.-G.;Liu,J.;Sci. Rep.,2013, 3, 2405.
DOI:10.1038/srep02405
26.Menzel, S.; Waters,M.; Marchewka,A.; Bottger,U.; Dittmann,
R.; Waser,R.;Adv. Funct. Mater.,2011, 21, 4487.
DOI:10.1109/LED.2014.2340016
27.Menzel,S.; Waters,M.; Marchewka,A.;Bottger,U,; Dittmann,
R.; Waser,R.;Adv. Funct. Mater.,2011, 21, 4487.
DOI:10.1002/adfm.201101117
28.Vempati,S.; Mitra,J.; Dawson,P.;Nanoscale Res. Lett., 2012,7,
470.
DOI:10.1186/1556-276X-7-470
29.Hai-Bo,F.; Shao-Yan,Y.; Pan-Feng,Z.;Hong-Yuan,W.;Xiang-
Lin,L.;Chun-Mei,J.; Qin-Sheng,Z.; Yong-Hai,C.; Zhan-Guo,
W.;Chinese Phys. Lett., 2007, 24, 2108.
DOI:10.1088/0256-307X/24/7/089
30.McCluskey,M.D.; Jokela,S.J.;J. Appl. Phys., 2009,106, 1.
DOI:10.1063/1.3216464
31.Huang,Y.-J.;Chao,S.-C.;Lien, D.-H.; Wen, J.-H. He,C.-Y.;
Lee,S.-C.;Sci. Rep.,2016, 6,23945.
DOI:10.1038/srep23945
32.Nandi,S.K.;Liu,X.;Venkatachalam,D.K.;Elliman,R.G.;J. Phys.
D. Appl. Phys., 2015, 48, 195105.
DOI:10.1088/0022-3727/48/19/195105
33.Chen,D.;Huang,S.-H.; Chinese Phys. B., 2016, 25, 117701.
DOI:10.1088/1674-1056/25/11/117701
34.Seo,J.W.; Park,J.W.; Lim, K.S.; Yang,J.H.;Kang,S.J.; Appl.
Phys. Lett.,2008, 93.
DOI:10.1063/1.3041643
35.Shi,Z.-F.;Xu,T.-T.;Wu,D.;Zhang,Y.-T.;Zhang,B.-L.;Tian,Y.-
T.;Li,X.-J.;Du,G.-T.;Nanoscale., 2016, 8, 9997.
DOI:10.1039/C5NR07236K
36.Sun,Y.; Yan,X.; Zheng,X.;Liu,Y.; Zhao,Y.; Shen,Y.; Liao,
Q.; Zhang,Y.;ACS Appl. Mater.Interfaces., 2015, 7, 7382.
DOI:10.1021/acsami.5b01080
37.Oba,F.; Togo,A.; Tanaka,I.; Paier,J.;Kresse,G.;Phys. Rev. B -
Condens. Matter Mater. Phys., 2008, 77, 3.
DOI:10.1103/PhysRevB.77.245202
38.Chang,W.Y.;Lin,C.A.;He,J.H.;Wu,T.B.;Appl. Phys. Lett., 2010,
96, 242109.
DOI:10.1063/1.3453450