Document Type : Research Article

Authors

Department of Electronic Science, University of Calcutta, Kolkata 700009, India.

Abstract

Vertically oriented ZnO nanowires are grown on p-Si substrate by employing two-step sequential chemical bath deposition technique. The ZnO nanowire exhibits n-type doping due to the presence of oxygen vacancies. The electrical characterizations of n-ZnO NWs/p-Si heterojunction diodes exhibit a self-rectifying, threshold resistive switching behavior. Such switching behavior is explained by oxygen vacancy assisted conducting filament formation mechanism. The relevant charge transport is governed by TC-SCLC and multistep recombination-tunneling processes through the interface traps. Threshold-voltage for resistive switching is observed to be increasing with increasing bias sweep rate. The device shows superior memory endurance for forward and reverse voltage sweep of 50 cycles in fast sweep mode. The ratio of HRS to LRS resistances shows one order of difference. The retention time of such resistive switching memory is recorded to be 4000 seconds, suggesting its non-volatile functionality. Thus, the n-ZnO NWs/p-Si heterojunction can be employed for fabricating promising non-volatile memory devices with excellent endurance and retentions. Copyright © 2018 VBRI Press.

Keywords

1.Menzel,S.; Waters,M.; Marchewka,A.; Bottger, U.; Dittmann,
R.; Waser,R.;Adv. Funct. Mater., 2011, 21, 4487.

DOI:10.1016/S1002-0071(12)60001-X

2.Russo,R.; Ielmini,D.; Cagli,C.; Lacaita,A.L.;IEEE Trans.
Electron Devices., 2009, 56, 186.

DOI:10.1109/TED.2008.2010583

3.Waser,R.; Aono,M.;Nat. Mater., 2007, 6, 833.

DOI:10.1038/nmat2023

4.Kim,K.M.; Jeong,D.S.; Hwang,C.S.;Nanotechnology., 2011,
22, 254002.

DOI:10.1088/0957-4484/22/25/254002

5.Lin,C.-Y.;Wu,C.-Y.;Wu,C.-Y. ;Tseng,T.-Y. ;Hu,C. ;J.Appl.
Phys., 2007, 102, 94101.

DOI:10.1063/1.2802990

6.Lin,C.-Y. ; Lee,D.-Y.; Wang,S.-Y. ;Lin, C.-C.; Tseng,T.-
Y.;Surf. Coatings Technol.,2008, 203, 628.

DOI:10.1016/j.surfcoat.2008.06.133

7.Zhang,J.; Yang,H., Zhang,Q.; Dong,S.;Luo,J.K.; Appl. Phys.
Lett., 2013, 102, 12113.

DOI:10.1063/1.4774400

8.Chen,C.; Pan,F.;Wang,Z.S.; Yang,J.;Zeng,F.;J. Appl.
Phys.,2012,111.

DOI:10.1063/1.3672811

9.Chang,W.-Y. ;Lai, Y.C. ; Wu,T.B. ;Wang,S.F.;Chen,F.;Tsai,
M.J. ;Appl. Phys. Lett., 2008, 92, 022110.

DOI:10.1063/1.2834852

10.Acharyya,D.; Hazra,A.; Dutta,K.;Gupta,R.K.; Bhattacharyya,
P.;Semicond. Sci. Technol., 2013, 28, 125001.

DOI:10.1088/0268-1242/28/12/125001

11.Wang,H.; Zou,C.; Zhou,L.; Tian,C., Fu, D.;Microelectron.
Eng.,2012, 91, 144.

DOI:10.1016/j.mee.2011.05.037

12.Wang,Z.L.;J. Phys. Condenced Matter., 2004, 16, R829.

DOI:http://dx.doi.org/10.1088/09538984/16/25/R01

13.Chicot,G.; Muret,P.;Santailler,J.-L.;Feuillet,G.; Pernot,J.;J.
Phys. D. Appl. Phys., 2014, 47, 465103.

DOI:10.1088/0022-3727/47/46/465103

14.Wan,H.; Ruda,H.E.;J. Mater. Sci. Mater. Electron., 2010, 21,
1014.

DOI:10.1007/s10854-010-0118-7

15.Li,S.Y.; Lee, C.Y.; Tseng,T.Y.;J. Cryst. Growth., 2003, 247,
357.

DOI:10.1016/S0022-0248(02)01918-8

16.Isakov,I.; Panfilova,M.;Sourribes,M.J.L.;Warburton,P.A.;Phys.
Status Solidi Curr. Top. Solid State Phys.,2013,10, 1308.

DOI:10.1002/pssc.201200940

17.Chiou,W.;Wu,W.; Ting,J.;Diam. Relat. Mater., 2003, 12, 1841.

DOI:10.1016/S0925-9635(03)00274-7

18.Ahn,S.E.; Ji,H.J.; Kim, J., Kim,G.T.;Bae,C.H.;Park,S.M.;
Kim,Y.K.;Ha,J.S.;Appl. Phys. Lett., 2007,90, 153106.

DOI:10.1063/1.2721289

19.McPeak,K.M.;Le,T.P.;Britton,N.G.;Nickolov,Z.S.;Elabd,
Y.A.; Baxter,J.B.;Langmuir., 2011, 27, 3672.

DOI:10.1021/la105147u

20.Das,A.; Kushwaha,A.; Sivasayan,R.K.; Chakraborty,S.; Dutta,
H.S.; Karmakar,A.; Chattopadhyay,S.; Chi,D.;Dalapati,G.K.;
J. Phys. D. Appl. Phys., 2016, 49, 145105.

DOI:10.1088/0022-3727/49/14/145105

21.Paul,S.;Das,A.;Palit,M.;Bhunia,S.;Karmakar,A.;
Chattopadhyay,S.;Adv. Mater. Lett.,2016,7, 610.

DOI:10.5185/amlett.2016.6298

22.Dong,J.-J.;Zhen,C.-Y.; Hao,H.-Y.;Xing,J.;Zhang,Z.-L.;
Zheng,Z.-Y.;Zhang,X.-W.;Nanoscale Res. Lett., 2013, 8, 378.

DOI:10.1186/1556-276X-8-378

23.Paul,S.;Das, A.; Chakraborty,A.;Chakraborty,B.; Palit,M.;
Chattopadhyay, D.;Chattopadhyay,S.; 1st Int. Sci. Technol.
Congr.,Elsevier Publications, 2014, 467.

24.Das,A.; Palit,M.; Paul,S.; Chowdhury, B.N.;Dutta,H.S.;
Karmakar,A.; Chattopadhyay,S.;Appl. Phys. Lett., 2014, 105, 2.
DOI:10.1063/1.4893944

25.Qi,J.;Olmedo,M.;Zheng,J.-G.;Liu,J.;Sci. Rep.,2013, 3, 2405.

DOI:10.1038/srep02405

26.Menzel, S.; Waters,M.; Marchewka,A.; Bottger,U.; Dittmann,
R.; Waser,R.;Adv. Funct. Mater.,2011, 21, 4487.

DOI:10.1109/LED.2014.2340016

27.Menzel,S.; Waters,M.; Marchewka,A.;Bottger,U,; Dittmann,
R.; Waser,R.;Adv. Funct. Mater.,2011, 21, 4487.

DOI:10.1002/adfm.201101117

28.Vempati,S.; Mitra,J.; Dawson,P.;Nanoscale Res. Lett., 2012,7,
470.

DOI:10.1186/1556-276X-7-470

29.Hai-Bo,F.; Shao-Yan,Y.; Pan-Feng,Z.;Hong-Yuan,W.;Xiang-
Lin,L.;Chun-Mei,J.; Qin-Sheng,Z.; Yong-Hai,C.; Zhan-Guo,
W.;Chinese Phys. Lett., 2007, 24, 2108.

DOI:10.1088/0256-307X/24/7/089

30.McCluskey,M.D.; Jokela,S.J.;J. Appl. Phys., 2009,106, 1.

DOI:10.1063/1.3216464

31.Huang,Y.-J.;Chao,S.-C.;Lien, D.-H.; Wen, J.-H. He,C.-Y.;
Lee,S.-C.;Sci. Rep.,2016, 6,23945.

DOI:10.1038/srep23945

32.Nandi,S.K.;Liu,X.;Venkatachalam,D.K.;Elliman,R.G.;J. Phys.
D. Appl. Phys., 2015, 48, 195105.

DOI:10.1088/0022-3727/48/19/195105

33.Chen,D.;Huang,S.-H.; Chinese Phys. B., 2016, 25, 117701.

DOI:10.1088/1674-1056/25/11/117701

34.Seo,J.W.; Park,J.W.; Lim, K.S.; Yang,J.H.;Kang,S.J.; Appl.
Phys. Lett.,2008, 93.

DOI:10.1063/1.3041643

35.Shi,Z.-F.;Xu,T.-T.;Wu,D.;Zhang,Y.-T.;Zhang,B.-L.;Tian,Y.-
T.;Li,X.-J.;Du,G.-T.;Nanoscale., 2016, 8, 9997.

DOI:10.1039/C5NR07236K

36.Sun,Y.; Yan,X.; Zheng,X.;Liu,Y.; Zhao,Y.; Shen,Y.; Liao,
Q.; Zhang,Y.;ACS Appl. Mater.Interfaces., 2015, 7, 7382.

DOI:10.1021/acsami.5b01080

37.Oba,F.; Togo,A.; Tanaka,I.; Paier,J.;Kresse,G.;Phys. Rev. B -
Condens. Matter Mater. Phys., 2008, 77, 3.

DOI:10.1103/PhysRevB.77.245202

38.Chang,W.Y.;Lin,C.A.;He,J.H.;Wu,T.B.;Appl. Phys. Lett., 2010,
96, 242109.

DOI:10.1063/1.3453450