1 Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India. National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea

2 Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India.

3 National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea


Today, we stand at the edge of exploring carbon nanotube (CNT) and graphene based polymer composites and
supercapacitors as next generation multifunctional materials. Supercapacitor materials have been alternative energy source in
modern electronics era. Due to their excellent electrical, mechanical and thermal properties, CNTs, graphene and their
derivatives have been most promising nanofillers in different fieldsof applications. Inthis review, we have focused electrical
conductivity of the polymer composites as well as supercapacitor behavior of composites based on CNTs, graphene and their
derivatives. To enhance the electrical and supercapacitor properties of the composites, nanofillers are functionalized or
chemically modified through different techniques. Here, we have discussed the structure, preparation,electrical and
supercapacitor properties of different composites based on CNTs, graphene and their derivatives along with detailed reported
scientific literature.Copyright © 2018VBRI Press


1.Moniruzzaman,M.;Winey,K. I. Polymer Nanocomposites
containing carbon nanotubes. Macromolecules 2006,39,5194-

Journet,C.;Bernier,P.;Poulin,P. Macroscopic fibers and
ribbons of oriented carbon nanotubes. Science 2000,290,1331-

3.Chiu,H. Y.;Hung,P.;Postma,H. W. C.;Bockrath,M. Atomic-
Scale Mass SensingUsing Carbon Nanotube Resonators. Nano

4.Xiao,K.;Liu,Y.;Hu,P.;Yu,G.;Sun,Y.;Zhu,D. n-Type
Field-Effect Transistors Made of an Individual Nitrogen-Doped
Multiwalled Carbon Nanotube. J.Am.Chem.Soc.2005,127,

5.Vijayaraghavan,A.;Blatt,S.;Weissenberger,D.;Carl,M. O.;
Hennrich,F.;Gerthsen,D.;Hahn,H.;Krupke,R. Ultra-Large-

ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 261

Scale Directed Assembly of Single-Walled Carbon Nanotube
Devices. Nano Lett.2007,7,1556-60.

Z.;Wu,Y.;Zhu,Z.;Tan,W. Carbon Nanotube-Quenched
Fluorescent Oligonucleotides: Probes that Fluoresce upon
Hybridization. J.Am.Chem.Soc.2008,130,8351-8.

7.Ci,L.;Suhr,J.;Pushparaj,V.;Zhang,X.;Ajayan,P. M.
Continuous Carbon Nanotube Reinforced Composites. Nano

8.Iijima,S. Helical microtubules of graphitic carbon. Nature

9.Guo,T.;Nikolaev,P.;Thess,A.;Colbert,D. T.;Smalley,R. E.
Catalytic growth of single-walled nanotubes by laser
vaporization. Chem.Phys.Lett.1995,243,4954.

10.Nikolaev,P.;Bronikowski,M. J.;Bradley,R. K.;Rohmund,F.;
Colbert,D. T.;Smith,K. A.;Smalley,R. E. Gas-phase catalytic
growth of single-walled carbon nanotubes from carbon
monoxide. Chem.Phys.Lett.1999,313,917.

11.Iijima,S.;Ichihashi,T. Single-shell carbon nanotubes of 1-nm
diameter. Nature 1993,363,6035.

12.Huang,S. M.;Woodson,M.;Smalley,R. E.;Liu,J. Growth
mechanism of oriented long single walled carbon nanotubes
using fast-heating chemical vapor deposition process. Nano Lett.

New synthesis of high-quality double-walled carbon nanotubes
by high temperature pulsed arc discharge. Nano Lett.2003,3,

14.Iijima,S. Helical microtubules of graphitic carbon. Nature

Poncharal,P.;Wang,Z. L.;Ugarte,D.;de Heer,W. A.
Electrostatic deflections and electromechanical resonances of
carbon nanotubes
. Science 1999,283,15136.
16.Wong,E. W.;Sheehan,P. E.;Lieber,C. M. Nanobeam
mechanics: elasticity, strength, and toughness of nanorods and
nanotubes. Science 1997,277,19715.

17.Baughman,R. H.;Cui,C.;Zakhidov,A. A.;Iqbal,Z.;Barisci,J.
N.;Spinks,G. M.;Wallace,G. G.;Mazzoldi,A.;Rossi,D. D.;
Rinzler,A. G.;Jaschinski,O.;Toth,S.;Kertesz,M. Carbon
nanotube actuators. Science 1999,284,13404.

18.Xie,X. L.;Mai,Y. W.;Ping,X. Dispersion and alignment of
carbon nanotubes in polymer matrix: a review. Mater.Sci.Eng.

19.Bachtold,A.;Hadley,P.;Nakanishi,T.;Dekker,C. Logic
circuits with carbon nanotube transistors. Science 2001,24,

20.Kasumov,A. Y.;Deblock,R.;Kociak,M.;Reulet,B.;Bouchiat,
H.;Khodos,I. I.;Gorbatov,Y. B.;Volkov,V. T.;Journet,C.;
Burghard,M. Supercurrents through single-walled carbon
nanotubes. Science 1999,284,150811.

21.Ajayan,P. M.;Iijima,S. Capillarity-induced filling of carbon
nanotubes. Nature 1993,361,3334.

22.Kumar,S.;Lively,B.;Sun,L. L.;Li,B.;Zhong,W. H. Highly
dispersed and electrically conductive polycarbonate/oxidized
carbon nanofiber composites for electrostatic dissipation
applications. Carbon 2010,48,384657.

.;Chen,Y.;Eklund,P. C. Electromagnetic interference (EMI)
shielding of single
-walled carbon nanotube epoxy composites.
Nano Lett
.2006, 6,11415.
24.Dang,Z. M.;Jiang,M. J.;Xie,D.;Yao,S. H.;Zhang,L. Q.;Bai,
J. Supersensitive linear piezoresistive property in carbon
nanotubes/silicone rubber nanocomposites. J.Appl.Phys.2008,

25.He,X.;Du,J.;Ying,Z.;Cheng,H. Positive temperature
coefficient effect in multiwalled carbon nanotube/high-density
polyethylene composites. Appl.Phys.Lett.2005,86,0621123.

26.Oliva-Aviles,A. I.;Aviles,F.;Sosa,V. Electrical and
piezoresistive properties of multi-walled carbon
nanotube/polymer composite films aligned by an electric field.
Carbon 2011,49,298997.

AC conductivity of selectively located carbon nanotubes
in poly (-caprolactone)/polylactide blend nanocomposites.
Biomacromolecules 2010,11,133947.

28.Hu,N.;Fukunaga,H.;Atobe,S.;Liu,Y.;Li,J. Piezoresistive
strain sensors made from carbon nanotubes based polymer
nanocomposites. Sensors 2011,11,10691723.

29.Potschke,P.;Dudkin,S. M.;Alig,I. Dielectric spectroscopy on
melt processed polycarbonate-multiwalled carbon nanotube
composites. Polymer 2003,44,502330.

30.Kaempgen,M.;Chan,C. K.;Ma,J.;Cui,Y.;Gruner,G.
Printable thin film supercapacitors using single-walled carbon
nanotubes. Nano Lett.2009,9,18726.

Comparative study of electromagnetic interference shielding
properties of injection molded versus compression molded multi-
walled carbon nanotube/polystyrene composites. Carbon 2012,

32.Ajayan,P. M.;Stephan,O.;Colliex,C.;Trauth,D. Aligned
carbon nanotube arrays formed by cutting a polymer resin-
nanotube composite. Science 1994,265,12124.

33.Jamal,A.;Ali,R.;Somayeh,M. Preparation and
characterization of linear low density polyethylene/carbon
nanotube nanocomposites. J.Macromol.Sci.Part B: Phys.2007,

34.Li,L.;Li,C. Y.;Ni,C.;Rong,L. X.;Hsiao,B. Structure and
crystallization behavior of Nylon 66/multi-walled carbon
nanotube nanocomposites at low carbon nanotube contents.
Polymer 2007,48,345260.

35.Mrozek,R. A.;Kim,B. S.;Holmberg,V. C.;Taton,T. A.
Homogeneous, coaxial liquid crystal domain growth from
carbon nanotube seeds. Nano Lett.2003,3,16659.

36.Bliznyuk,V. N.;Singamaneni,S.;Sanford,R. L.;Chiappetta,D.;
Crooker,B.;Shibaev,P. V. Matrix mediated alignment of single
wall carbon nanotubes in polymer composite films. Polymer

Kiricsi,I. Multiwall carbon nanotube modified vinylester and
vinylester-based hybrid resins. Compos.Part.A 2006,37,

38.Ghose,S.;Watson,K. A.;Delozier,D. M.;Working,D. C.;
Siochi,E. J.;Connell,J. W. Incorporation of multi-walled
carbon nanotubes into high temperature resin using dry mixing
techniques. Compos.Part A 2006,37,46575.

39.Ago,H.;Petritsch,K.:Shaffer,M. S. P.;Windle,A. H.;Friend,
R. H. Composites of carbon nanotubes and conjugated polymers
for photovoltaic devices. Adv.Mater.1999,11,1281-5.

40.Zhao,B.;Hu,H.;Haddon,R. C. Synthesis and properties of a
watersoluble single-walled carbon nanotube-poly(m-
aminobenzene sulfonic acid) graft copolymer. Adv.Funct.

41.Wang,Z.;Ciselli,P.;Peijs T. The extraordinary reinforcing
efficiency of single-walled carbon nanotubes in oriented
poly(vinyl alcohol) tapes. Nanotechnology 2007,18,455709/1

Kanagaraj,S.;Varanda,F. R.;Zhil’tsova,T. V.;Oliveira,M. S.
.;Simoes,J. A. O. Mechanical properties of high density
polyethylene/carbon nanotube composites
. Compos.Sci.
43.Gong,X. Y.;Liu,J.;Baskaran,S.;Voise,R. D.;Young,J. S.
Surfactant-assisted processing of carbon nanotube/polymer
composites. Chem.Mater.2000,12,104952.

44.Yang,B. X.;Shi,J. H.;Pramoda,K. P.;Goh,S. H.
Enhancement of stiffness, strength, ductility and toughness of
poly(ethylene oxide) using phenoxy-grafted multiwalled carbon
nanotubes. Nanotechnology 2007,18,125606/17.

45.Gao, C.; Vo, C. D.; Jin, Y. Z.; Li, W.; Armes.S. P.
Multihydroxy polymer-functionalized carbon nanotubes:
synthesis, derivation, and metal loading. Macromolecules 2005,
38, 8634-48.

46.Mazinani,S.;Ajji,A.;Dubois,C.;Morphology, structure and
properties of conductive PS/CNT nanocomposite electrospun
mat. Polymer 2009,50,332942.

47.Guo,H.;Sreekumar,T. V.;Liu,T.;Minus,M.;Kumar,S.
Structure and properties of polyacrylonitrile/single wall carbon
nanotube composite films. Polymer 2005,46,30015.

Anisotropic optical properties of mechanically aligned single-

ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 262

walled carbon nanotubes in polymer. Appl.Phys.A 2004; 78:

49.Li,Y.;Zhang,X. B.;Tao,X. Y.;Xu,J. M.;Huang,W. Z.;Luo,J.
H.;Luo,Z. Q.;Li,T.;Liu,F.;Bao,Y.;Geise,H. J. Mass
production of high-quality multi-walled carbon nanotube bundles
on a Ni/Mo/MgO catalyst. Carbon 2005,43,295301.

50.Hiraoka,T.;Yamada,T.;Hata,K.;Futaba,D. N.;Kurachi,H.;
Uemura,S.;Yumura,M.;Lijima,S. Synthesis of single-and
double-walled carbon nanotube forests on conducting metal
foils. J.Am.Chem.Soc.2006,128,133389.

51.Wilder,J. W. G.;Venema,L. C.;Rinzler,A. G.;Smalley,R. E.;
Dekker,C. Electronic structure of atomically resolved carbon
nanotubes. Nature 1998,391,5962.

52.Tasis,D.;Tagmatarchis,N.;Bianco,A.;Prato,M. Chemistry of
carbon nanotubes. Chem.Rev.2006,106,110536.

53.Baughman,R. H.;Zakhidov,A. A.;de Heer,W. A. Carbon
nanotubesthe route toward applications. Science 2002,297,

54.Bianco,A.;Kostarelos,K.;Partidos,C. D.;Prato,M.
Biomedical applications of functionalised carbon nanotubes.

55.Dyke,C. A.;Tour,J. M. Covalent functionalization of single
walled carbon nanotubes for materials applications. J.Phys.
Chem.A 2004,108,111519.

56.Lu,W.;Chou,T.-W. Analysis of the entanglements in carbon
nanotube fibers using a self-folded nanotube model. J.Mech.
Phys.Solids 2011,59,51124.

57.Liu,T.;Phang,I. Y.;Shen, L.;Chow,I. Y.;Zhang,W. -D.
Morphology and mechanical properties of multiwalled carbon
nanotubes reinforced nylon-6 composites. Macromolecules

58.Banerjee,S.;Hemraj-Benny,T.;Wong,S. S. Covalent surface
chemistry of single-walled carbon nanotubes. Adv.Mater.2005,

59.Zhu,J.;Kim,J.;Peng,H.;Margrave,J. L.;Khabashesku,V. N.;
Barrera,E. V. Improving the dispersion and integration of single
walled carbon nanotubes in epoxy composites through
functionalization. Nano Lett.2003,3,110713.

60.Balasubramanian,K.;Burghard,M. Chemically functionalized
carbon nanotubes. Small 2005,1,18092.

61.Tasis,D.;Tagmatarchis,N.;Georgakilas,V.;Prato,M. Soluble
carbon nanotubes. Chem.Eur.J.2003,9,40008.

62.Star,A.;Liu,Y.;Grant,K.;Ridvan,L.;Stoddart,J. F.;
Steuerman,D. W.;Diehl,M. R.;Boukai,A.;Heath,J. R.
Noncovalent side-wall functionalization of single walled carbon
nanotubes. Macromolecules 2003,36,55360.

63.Liu,Z.;Tabakman,S. M.;Chen,Z.;Dai,H. Preparation of
carbon nanotube bioconjugates for biomedical applications. Nat.

64.Dyke,C. A.;Tour,J. M. Solvent-free functionalization of
carbon nanotubes. J.Am.Chem.Soc.2003,125,11567.

65.Hirsch,A. Functionalization of single-walled carbon
nanotubes. Angew.Chem.Int.Ed. 2002,41,18539.

66.Ebbesen,T. W.;Ajayan,P. M.;Hiura,H.;Tanigaki,K.
Purification of nanotubes”.Nature 1994,367,519.

67.Hiura,H.;Ebbesen,T. W.;Tanigaki,K. Opening and
purification of carbon nanotubes in high yields. Adv.Mater.

68.Liu,J.;Rinzler,A. G.;Dai,H.;Hafner,J. H.;Bradley,R. K.;
Boul,P. J.;Lu,A.; Iverson,T.;Shelimov,K.;Huffman,C. V.;
Rodriguez-Macias,F.;Shon,Y. S.;Lee,T. R.;Colbert,D. T.;
Smalley,R. E. Fullerene pipes. Science 1998,280,12536.

69.Mawhinney,D. B.;Naumenko,V.;Kuznetsova,A.;Yates,Jr.J.
T.;Liu,J.;Smalley,R. E. Surface defect site density on singale
walled carbon nanotubes by titration. Chem.Phys.Lett.2000,

70.Hu,H.;Bhowmik,P.;Zhao,B.;Hamon,M. A.;Itkis,M. E.;
Haddon,R. C. Determination of the acidic sites of purified
single-walled carbon nanotubes by acid-base titration. Chem.

71.Chen,J.;Hamon,M. A.;Hu,H.;Chen,Y.;Rao,A. M.;Eklund,
P. C.;Haddon,R. C. Solution properties of single-walled carbon
nanotubes. Science 1998,282,958.

72.Bandow,S.;Rao,A. M.;Williams,K. A.;Thess,A.;Smalley,R.
E.;Eklund,P. C. Purification of single-wall carbon nanotubes
by microfiltration. J.Phys.Chem.B 1997,101,883942.

73.Duesberg,G. S.;Burghard,M.;Muster,J.;Philipp,G.
Separation of carbon nanotubes by size exclusion
chromatography. Chem.Comm.1998,3,4356.

74.Paredes,J. I.;Burghard,M. Dispersions of individual single-
walled carbon nanotubes of high length. Langmuir,2004,20,

75.Moore,V. C.;Strano,M. S.;Haroz,E. H.;Hauge,R. H.;
Smalley,R. E.;Schmidt,J.;Talmon,Y. Individually suspended
single-walled carbon nanotubes in various surfactants. Nano

76.Islam,M. F.;Rojas,E.;Bergey,D. M.;Johnson,A. T.;Yodh,A.
G. High weight fraction surfactant solubilization of single-wall
carbon nanotubes in water. Nano Lett.2003,3,26973.

77.Sáfar,G. A. M.;Ribeiro,H. B.;Malard,L. M.;Plentz,F. O.;
Fantini,C.;Santos,A. P.;de Freitas-Silva,G.;Idemori,Y. M.
Optical study of porphyrin-doped carbon nanotubes. Chem.

78.Tan,Y.;Resasco,D. E. Dispersion of single-walled carbon
nanotubes of narrow diameter distribution. J.Phys.Chem.B

79.Yurekli,K.;Mitchell,C. A.;Krishnamootri,R. Small angle
neutron scattering from surfactant assisted aqueous dispersion of
carbon nanotubes. J.Am.Chem.Soc.2004,126,99023.

80.Jiang,L.;Gao,L.;Sun,J. Production of aqueous colloidal
dispersions of carbon nanotubes. J.Coll.Interf.Sci.2003,260,

Guo,Z.;Sadler, P. J.;Tsang,S. C. Immobilization and
visualization of DNA and proteins on carbon nanotubes
. Adv.
82.Chen,R. J.;Zhang,Y.;Wang,D.;Dai,H. Noncovalent sidewall
functionalization of single-walled carbon nanotubes for protein
immobilization. J.Am.Chem.Soc.2001,123,38389.

83.Lordi,V.;Yao,N. Molecular mechanics of binding in carbon
nanotube polymer composites. J.Mater.Res.2000,15,27709.

84.O’Connell,M. J.;Boul,P.;Ericson,L. M.;Huffman,C.;Wang,
Y.;Haroz,E.;Kuper,C.;Tour,J.;Ausman,K. D.;Smalley,R. E.
Reversible water-solubilization of single-walled carbon
nanotubes by polymer wrapping. Chem.Phys.Lett.2001,342,

85.Steuerman,D. W.;Star,A.;Narizzano,R.;Choi,H.;Ries,R. S.;
Nicolini,C.;Stoddart,J. F.;Heath,J. R. Interactions between
conjugated polymers and single-walled carbon nanotubes. J.
Phys.Chem.B 2002,106,312430.

Rozen,R. Stabilization of individual carbon nanotubes in
aqueous solutions. Nano Lett.2002,2,258.

87.Pei,X.;Hu,L.;Liu,W.;Hao,J. Synthesis of water-soluble
carbon nanotubes via surface initiated redox polymerization and
their tribological properties as water-based lubricant additive.

88.Wu,H. X.;Qiu,X. Q.;Cao, W. M.;Lin,Y. H.;Cai, R. F.;Qian,
S. X. Polymer-wrapped multiwalled carbon nanotubes
synthesized via microwave assisted in situ emulsion
polymerization and their optical limiting properties. Carbon

Soluble, discrete supramolecular complexes of single-walled
carbon nanotubes with fluorene-based conjugated polymers.
Macromolecules 2008,41,23048.

90.Ogoshi,T.;Yamagishi,T. A.;Nakamoto,Y. Supramolecular
single walled carbon nanotubes (SWCNTs) network polymer
made by hybrids of SWCNTs and water-soluble calyx [8]
arenas. Chem.Comm.2007,45,47768.

91.Coleman,J. N.;Dalton,A. B.;Curran,S.;Rubio,A.;Davey,A.
P.;Drury,A.;McCarthy,B.;Lahr,B.;Ajayan,P. M.;Roth,S.;
Barklie,R. C.;Blau,W. J. Phase separation of carbon nanotubes
and turbostratic graphite using a functional organic polymer.

92.Kang,Y.;Taton,T. A. Micelle-encapsulated carbon nanotubes:
a route to nanotube composites. J.Am.Chem.Soc.2003,125,

ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 263

93.Niyogi,S.;Hamon,M. A.;Hu,H.;Zhao,B.;Bhowmik,P.;Sen,
R.;Itkis,M. E.;Haddon,R. E. Chemistry of single-walled
carbon nanotubes. Acc.Chem.Res.2002,35,110513.

94.Park,H.;Zhao,J.;Lu,J. P. Effects of sidewall functionalization
on conducting properties of single wall carbon nanotubes. Nano

95.Zhang,X.;Sreekumar,T. V.;Liu,T.;Kumar,S. Properties and
structure of nitric acid oxidized single wall carbon nanotube
films. J.Phys.Chem.B 2004,108,1643540.

96.Georgakilas,V.;Kordatos,K.;Prato,M.;Guldi,D. M.;
Holzingger,M.;Hirsch,A. Organic functionalization of carbon
nanotubes. J.Am.Chem.Soc.2002,124,7601.

97.Cho,J. W.;Kim,J. W.;Jung,Y. C.;Goo,N. S. Electroactive
shape-memory polyurethane composites incorporating carbon
nanotubes. Macromol.Rapid. Comm.2005,26,4126.

Siokou,A.;Kallitsis,I.;Galiotis,C. Chemical oxidation of
multiwalled carbon nanotubes. Carbon 2008,46,83340.

99.Hemon,M. A.;Chen,J.; Hu, H.;Chen,Y.;Itkis,M. E.;Rao,A.
M.;Eklund,P. C.;Haddon,R. C. Dissolution of single-walled
carbon nanotubes. Adv.Mater.1999,11,83440.

100.Vasiliev,I.;Curran,S. A. Cross linking of thiolated carbon
nanotubes: an ab initio study. J.Appl.Phys.2007,102,

101.Zhou,O.;Fleming,R. M.;Murphy,D. W.;Chen,C. H.;Haddon,
R. C.;Ramirez,A. P.;Glarum,S. H. Defects in carbon
nanostructures. Science 1994,263,17447.

102.Mickelson,E. T.;Huffman,C. B.;Rinzler,A. G.;Smalley,R. E.;
Hauge,R. H.;Margrave,J. L. Fluorination of single-wall carbon
nanotubes. Chem.Phys.Lett.1998,296,18894.

103.Mickelson,E. T.;Huffman,C. B.;Rinzler,A. G.;Smalley,R. E.;
Hauge,R. H.;Margrave,J. L. Fluorination of single-wall carbon
nanotubes. Chem.Phys.Lett.1998,296,18894.

104.Boul,P. J.;Liu,J.;Mickelson,E. T.;Huffman,C. B.;Ericson,L.
M.;Chiang,I. W.;Smith,K. A.;Colbert,D. T.;Hauge,R. H.;
Margrave,J. L.;Smalley,R. E. Reversible sidewall
functionalization of buckytubes. Chem.Phys.Lett.1999,310,

Kappes,M.;Weiss,R.;Jellen,F. Sidewall functionalization of
carbon nanotubes. Angew.Chem.Int.Ed.2001,40,40025.

106.Bahr,J. L.;Yang,J.;Kosynkin,D. V.;Bronikowski,M. J.;
Smalley,R. E.;Tour,J. M. Functionalization of carbon
nanotubes by electrochemical reduction of aryl diazonium salts: a
bucky paper electrode. J.Am.Chem.Soc.2001,123,653642.

107.Bahr,J. L.;Mickelson,E. T.;Bronikowski,M. J.;Smalley,R. E.;
Tour,J. M. Dissolution of small diameter single-wall carbon
nanotubes in organic solvents? Chem.Comm.2001,2,1934.

108.Baek,J. B.;Lyons,C. B.;Tan,L. S. Grafting of vapor-grown
carbon nanofibers via in situ polycondensation of 3-
phenoxybenzoic acid in poly(phosphoric acid). Macromolecules

109.Jin,Z.;Sun,X.;Xu,G.;Goh,S. H.;Ji,W. Nonlinear optical
properties of some polymer/multi-walled carbon nanotube
composites. Chem.Phys.Lett.2000,318,50510.

Fu,K.;Huang,W.;Lin,Y.;Riddle,L. A.;Carroll,D. L.;Sun,Y.
Defunctionalizationof functionalized carbon nanotubes.
Nano Lett
Qin,S.;Qin,D.;Ford,W. T.;Resasco,D. E.;Herrera,J. E.
Functionalization of single-walled nanotubes with polystyrene
via grafting to and grafting from methods
. Macromolecules
112.Riggs,J. E.;Guo,Z.;Carroll,D. L.;Sun,Y. P. Strong
luminescence of solubilized carbon nanotubes. J.Am.Chem.

113.Lin,Y.;Zhou,B.;Fernando,K. A. S.;Liu,P.;Allard,L. F.;Sun,
Y. P. Polymeric carbon nanocomposites from carbon nanotubes
functionalized with matrix polymer. Macromolecules 2003,36,

114.Qu,L. W.;Lin,Y.;Hill,D. E.;Zhou,B.;Wang,W.;Sun,X.;
Kitaygorodskiy,A.;Suarez, M.;Connell,J. W.;Allard,L. F.;
Sun,Y. -P. Polyimide functionalized carbon nanotubes:
synthesis and dispersion in nanocomposite films.
Macromolecules 2004,37,605560.

115.Lou,X. D.;Detrembleur,C.;Pagnoulle,C.;Jerome,R.;
Bocharova,V.;Kiriy,A.;Stamm,M. Surface modification of
multiwalled carbon nanotubes bypoly(2-vinylpyridine):
dispersion, selective deposition, and decoration of the
nanotubes. Adv.Mater.2004,16,21237.

116.Koshio,A.;Yudasaka,M.;Zhang,M.;Iijima,S. A simple way
to chemically react single-wall carbon nanotubes with organic
materials using ultrasonication. Nano Lett.2001,1,3613.

117.Lee,M.;Jeon,H.;Min,B. H.;Kim,J. H. Morphology and
Electrical Properties of Poly
Carbon Nanotube Nanocomposites. J.Appl.Polym.Sci.2011,

118.Riggs,J. E.;Walker,D. B.;Carroll,D. L.;Sun,Y. -P. Optical
limiting properties of suspended and solubilized carbon
nanotubes. J.Phys.Chem.B 2000,104,70716.

119.Sano,M.;Kamino,A.;Shinkai,S. Construction of carbon
nanotube stars with dendrimers. Angew.Chem.Int.Ed.2001,

120.Sun,Y. P.;Huang,W.;Lin,Y.;Fu,K.;Kitaygorodskiy,A.;
Riddle,L. A.;Yu,Y. J.;Carroll,D. L. Soluble dendron-
functionalized carbon nanotubes: preparation, characterization,
and properties. Chem.Mater.2001,13,28649.

121.Cao,L.;Yang,W.;Yang,J.;Wang,C.;Fu,S. Hyperbranched
poly(amidoamine)-modified multi-walled carbon nanotubes via
grafting-from method. Chem.Lett.2004,33,4901.

122.Blake,R.;Gunko,Y. K.;Coleman,J.;Cadek,M.;Fonseca,A.;
Nagy,J. B.;Blau,W. J. A generic organometallic approach
toward ultra-strong carbon nanotube polymer composites. J.

123.Baskaran,D.;Mays,J. W.;Bratcher,M. S. Polymer-grafted
multi walled carbon nanotubes through surface-initiated
polymerization. Angew.Chem.Int.Ed. 2004,43,213842.

124.Qu,L.;Veca,L. M.;Lin,Y.;Kitaygorodskiy,A.;Chen,B.;
McCall,A. M.;Connell,J. W.;Sun,Y. -P. Soluble nylon-
functionalized carbon nanotubes from anionic ringopening
polymerization from nanotube surface. Macromolecules 2005,

125.Kong,H.;Luo,P.;Gao,C.;Yan,D. Polyelectrolyte-
functionalized multiwalled carbon nanotubes: preparation,
characterization and layer-by-layer self-assembly. Polymer

126.Park,S. J.;Cho,M. S.;Lim,S. T.;Cho,H. J.;Jhon,M. S.
Synthesis and dispersion characteristics of multi-walled carbon
nanotube composites with poly(methyl methacrylate) prepared by
in-situbulk polymerization. Macromol.Rapid.Comm.2003,24,

127.Kong,H.;Li,W.;Gao,C.;Yan,D.;Jin,Y.;Walton,D. R. M.;
Kroto,H. W. Poly(N-isopropyl acrylamide) coated carbon
nanotubes: temperature sensitive molecular nanohybrids in
water. Macromolecules 2004,37,66836.

128.Kong,H.;Gao,C.;Yan,D. Constructing amphiphilic polymer
brushes on the convex surfaces of multi-walled carbon nanotubes
by in situ atom transfer radical polymerization. J.Mater.Chem.

129.Gultner,M.;Goldel,A.;Potschke,P. Tuning the localization of
functionalized MWCNTs in SAN/PC blends by a reactive
component. Compos.Sci.Technol.2011,72,41-8.

Qin,S.;Qin,D.;Ford,W. T.;Herrera,J. E.;Resasco, D. E.
Grafting of poly(4-vinylpyridine) to single-walled carbon
nanotubes and assembly of mul
tilayer films”. Macromolecules
131.Gao,C.;Vo,C. D.;Jin,Y. Z.;Li,W.;Armes,S. P.
Multihydroxy polymer functionalized carbon nanotubes:
synthesis, derivation, and metal loading. Macromolecules 2005,

132.Zeng,H. L.;Gao,C.;Yan,D. Y. Poly(-caprolactone)-
functionalized carbon nanotubes and their biodegradation
properties. Adv.Funct.Mater.2006,16,8128.

133.Yang,J.;Hu,J.;Wang,C.;Qin,Y.;Guo,Z. Fabrication and
characterization of soluble multi-walled carbon nanotubes
reinforced P(MMA-co-EMA) composites. Macromol.Mat.Eng.

ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 264

134.Huisgen,R. 1,3-Dipolar cycloadditions-introduction, survey,
mechanism in 1,3-dipolar cycloaddition chemistry. In: Padwa A,
editor. 1,3-Dipolar cycloaddition chemistry, vol. 1.NewYork:
Wiley; 1984. p. 1176.

135.Tornoe,C. W.;Christensen,C.;Meldal,M. Peptidotriazoles on
solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed
1,3-dipolar cycloadditions of terminal alkynes to azides. J.Org.

136.Helms,B.;Mynar,J. L.;Hawker,C. J.;Frechet,J. M. J.
Dendronized linear polymers via click chemistry. J.Am.Chem.

Malkoch,M.;Schleicher,K.;Drockenmuller,E.;Hawker,C. J.;
,T. P.;Wu,P.;Fokin,V. V. Structurally diverse
dendritic libraries: a highly efficient functionalization approach

using click chemistry
. Macromolecules 2005,38,366378.
138.Wu,P.;Feldman,A. K.;Nugent,A. K.;Hawker,C. J.;Scheel,
A.;Voit,B.;Pyun,J.;Frechet,J. M. J.;Sharpless,K. B.;Fokin,
V. V. Efficiency and fidelity in a click-chemistry route to
triazole dendrimers by the copper(I)-catalyzed ligation of azides
and alkynes. Angew.Chem.Int.Ed.2004,43,392832.

139.Link,A. J.;Vink,M. K. S.;Tirrell,D. A. Presentation and
detection of azide functionality in bacterial cell surface proteins.

140.Rostovtsev,V. V.;Green,L. G.;Fokin,V. V.;Sharpless,K. B.
A stepwise huisgen cycloaddition process: copper(I)-catalyzed
regioselective ligation of azides and terminal alkynes. Angew.

141.Horne,W. S.;Yadav,M. K.; Stout,C. D.;Ghadiri, M. R.
Heterocyclic peptide backbone modifications in an alpha-helical
coiled coil. J.Am.Chem.Soc.2004,126,153667.

142.Guojian,W.;Zehua,Q.;Lin,L.;Quan,S.;Jianlong,G. Study of
SMA graft modified MWNT/PVC composite materials. Mater.
Sci.Eng.A 2008,472,1369.

143.Baskaran,D.;Mays,J. W.;Bratcher,M. S. Polymer adsorption
in the grafting reactions of hydroxyl terminal polymers with
multi-walled carbon nanotubes. Polymer 2005,46,50507.

Zhang,N.;Xie,J.;Guers,M.;Varadan,V. K. Chemical bonding
of multiwalled carbon nanotubes to polydimethylsiloxanes and

modification of the photoinitiator system for

ereolithography processing. Smart.Mater.Struct.2004,
145.Zhao,B.;Hu,H.;Yu,A.;Perea,D.;Haddon,R. C. Synthesis
and characterization of water soluble single-walled carbon
nanotube graft copolymers. J.Am.Chem.Soc.2005,127,

146.Wang,W.;Lin,Y.;Sun,Y. P. Poly(N-vinyl carbazole)-
functionalized single-walled carbon nanotubes: synthesis,
characterization, and nanocomposite thin films. Polymer 2005,

147.Wu,C. S.;Liao,H. T. Study on the preparation and
characterization of biodegradable polylactide/multi-walled carbon
nanotubes nanocomposites. Polymer 2007,48,444958.

148.Huang,W.;Lin,Y.;Taylor,S.;Gaillard,J.;Rao,A. M.;Sun,Y.
P. Sonication assisted functionalization and solubilization of
carbon nanotubes. Nano Lett.2002,2,2314.

Hu,H.;Ni,N.;Mandal,S. K.;Montana,V.;Zhao, B.;Haddon,
. C.;et al. Polyethyleneimine functionalized single-walled
carbon nanotubes as a substrate for neuronal growth
. J.Phys.
.B 2005,109,42859.
150.Ge,J. J.;Zhang,D.;Li,Q.;Hou,H.;Graham,M. J.;Dai,L.;et
al. Multiwalled carbon nanotubes with chemically grafted
polyetherimides. J.Am.Chem.Soc.2005,127,99845.

151.Sano,M.;Kamino,A.;Okamura,J.;Shinkai,S. Self-
organization of PEO-graft-single-walled carbon nanotubes in
solutions and LangmuirBlodgett films. Langmuir 2001,17,

152.Negra,F. D.;Meneghetti,M.;Menna,E. Microwave-assisted
synthesis of a soluble single wall carbon nanotube derivative.
Fuller.Nanotub.Carbon Nanostruct.2003,11,2534.

153.Huang,W.;Fernando,S.;Allard,L. F.;Sun,Y. P. Solubilization
of single walled carbon nanotubes with diamine-terminated
oligomeric poly(ethylene glycol) in different functionalization
reactions. Nano Lett.2003,3,5658.

154.Zhao,B.;Hu,H.;Mandal,S. K.;Haddon,R. C. A bone mimic
based on the self-assembly of hydroxyapatite on chemically

functionalized single-walled carbon nanotubes. Chem.Mater.

155.Singh,V.;Joung,D.;Zhai,L.;Das,S.;Khondaker,S. I.; Seal,S.
Graphenebased materials: past, present and future. Prog.

156.Geim,A. K.;Novoselov,A. K. The rise of graphene. Nat Mater

157.Wallace,P. R. The band theory of graphite. Phys.Rev.1947,

158.Viculis,L. M.;Mack,J. J.;Mayer,O. M.;Hahn,H. T.;Kaner,R.
B. Intercalation and exfoliation routes to graphite nanoplatelets.

159.Afanasov,I. M.;Morozov,V. A.;Kepman,A. V.;Ionov,S. G.;
Seleznev,A. N.;Tendeloo,G. V.;Avdeev,V. V. Preparation,
electrical and thermal properties of new exfoliated graphite-based
composites. Carbon 2009,47,26370.

160.Boehm,H. P.;Clauss,A.;Fischer,G.;Hofmann,U. Surface
properties of extremely thin graphite lamellae. In: proceedings
of the fifth conference on carbon; 1962. p.73.

161.Novoselov,K. S.;Geim,A. K.;Morozov,S. V.;Jiang,D.;
Zhang,Y.;Dubonos,S. V.;Grigorieva,I. V.;Firsov,A. A.
Electric field effect in atomically thin carbon films. Science

162.Dreyer,R. D.;Park,S.;Bielawski,C. W.;Ruoff,R. S. The
chemistry of graphene oxide. Chem.Rev.Soc.2010, 39,228

163.Li,X.;Wang,X.;Zhang,L.;Lee,S.;Dai,H. Chemically
derived, ultra-smooth graphene nanoribon semiconductor.
Science 2008,319,122932.

164.Roy,N.;Sengupta,R.;Bhowmick,A. K.;Modifications of
carbon for polymer composites and nanocomposites.Prog.

165.Novoselov,K. S.;Jiang,Z.;Zhang,Y.;Morozov,S. V.;Stormer,
H. L.;Zeitler,U.;Maan,J. C.;Boebinger,G. S.;Kim,P.;Geim,
A. K. Room-temperature quantum hall effect in graphene.
Science 2007,315,1379.

166.Balandin,A. A.;Ghosh,S.;Bao,W.;Calizo,I.;Teweldebrhan,
D.;Miao,F.;Lau,C. N. Superior thermal conductivity of single-
layer graphene. Nano Lett.2008,8,902-7.

167.Novoselov,K. S.;Geim,A. K.;Morozov,S. V.;Jiang,D.;
Katsnelson,M. I.;Grigorieva,I. V.;Dubonos,S. V.;Firsov,A.
A. Two-dimensional gas of massless Dirac fermions in
graphene”. Nature 2005,438,197-200.

168.Lee,C.;Wei,X.;Kysar,J. W.;Hone,J. Measurement of the
elastic properties and intrinsic strength of monolayer graphene.
Science 2008,321,385-8.

169.Ansari,S.;Giannelis,E. P. Functionalized graphene sheet-
poly(vinylidene fluoride) conductive nanocomposites. J.Polym.
Sci.Part B Polym.Phys.2009,47,88897.

170.Ramanathan,T.;Abdala,A. A.;Stankovich,S.;Dikin,D. A.;
Alonso,M. H.;Piner,R. D.;Adamson,D. H.;Schniepp,H. C.;
Chen,X.;Ruoff,R. S.;Nguyen,S. T.;Aksay,I. A.;Prud’homme,
R. K.;Brinson,L. C. Functionalized graphene sheets for
polymer nanocomposites. Nat.Nanotechnol.2008,3,32731.

171.Yang,S. Y.;Lin,W. N.;Huang,Y. L.;Tien,H. W.;Wang,
J. Y.;Ma,C. C. M.;Li,S. M.;Wang,Y. -S. Synergetic
effects of graphene platelets and carbon nanotubes on the
mechanical and thermal properties of epoxy composites. Carbon

172.Kuila,T.;Bose,S.;Mishra,A. K.;Khanra,P.;Kim,N. H.;Lee,J.
H. Chemical functionalization of graphene and its applications.

173.Huang,J.;Wang,X.;deMello,A. J.;deMello,J. C.;Bradley,D.
D. C. Efficient flexible polymer light emitting diodes with
conducting polymer anodes. J.Mater.Chem.2007,17,35514.

174.Li,D.;Muller,M. B.;Gijle,S.;Kaner,R. B.;Wallace,G. G.
Processable aqueous dispersions of graphene nanosheets. Nat.

175.Si,Y.;Samulski,E. T. Synthesis of water soluble graphene.
Nano Lett.2008,8,167982.

Du,X.;Yu,Z. Z.;Dasari,A.;Ma,J.;Mo,M.;Meng,Y.;Mai,
. -W. New method to prepare graphite nanocomposites.
177.Kim,H.;Macosko,C. W. Morphology and properties of
polyester/exfoliated graphite nanocomposites. Macromolecules

178.Singh,V.;Joung,D.;Zhai,L.;Das,S.;Khondaker,S. I.;Seal,S.
Graphene based materials: Past, present and future. Prog.

179.Brodie,B. C. On the atomic weight of graphite. Phil.Trans.R
Soc.Lond.Ser.A 1859,149,24959.

180.Hummers,W. S.;Offeman,R. E. Preparation of graphitic
oxide. J.Am.Chem.Soc.1958,80,13391339.

181.Dresselhaus,M. S.;Dresselhaus,G. Intercalation compounds of
graphite. Adv.Phys.2002, 1,1186.

Chen,G. H.;Wu,D. J.;Weng,W. G.;Yan,W. -L.
Preparation of polymer/graphite conducting nanocomposite by
intercalation polymerization
. J.Appl.Polym.Sci.2001,82,
Chen,G. H.;Wu,D. J.;Weng,W. G.;Yan,W. -L.
Dispersion of graphite nanosheets in a polymer matrix and the
conducting properties of the nanoco
mposites. Polym.Eng.Sci.
184.Viculis,L. M.;Mack,J. J.;Kaner,R. B. A chemical route to
carbon nanoscrolls. Science 2003,299,1361.

185.Shioyama,H. The interactions of two chemical species in the
interlayer spacing of graphite. Synth.Met.2000,114,115.

186.Chen,G. H.Wu,D. J.;Weng,W. G.;He,B.;Yan,W.
Preparation of polystyrenegraphite conducting nanocomposites
via intercalation polymerization. Polym.Int.2001,50,9805.

187.Rafiee,M. A.;Rafiee,J.;Wang,Z.;Song,H.;Yu,Z. Z.;
Koratkar,N. Enhanced mechanical properties of
nanocomposites at low graphene content. ACS Nano 2009,3,

Anomalous bond of monolayer graphite on transition-metal
carbide surfaces. Phys.Rev.Lett.1990,64,76871.

189.Stankovich, S.;Dikin,D. A.;Piner,R. D.;Kohlhaas,K. A.;
Kleinhammes,A.;Jia,Y.;Wu,Y.;Nguyen,S. T.;Ruoff,R. S.
Synthesis of graphene-based nanosheets via chemical reduction
of exfoliated graphite oxide. Carbon 2007,45,155865.

190.Gilje,S.;Han,S.;Wang,M.;Wang,K. L.;Kaner,R. B. A
chemical route to graphene for device applications. Nano Lett.

Functionalized graphenes and thermoplastic nanocomposites
based upon expanded graphite oxide. Macromol.Rapid.Comm.

192.McAllister,M. J.;Li,J. L.;Adamson,D. H.;Schniepp,H. C.;
Abdala,A. A.;Liu,J.;Herrera-Alonso,M.;Milius,D. L.;Car,
R.;Prud’homme,R. K.;Aksay,I. A. Single sheet functionalized
graphene by oxidation and thermal expansion of graphite. Chem.

193.Niyogi,S.;Bekyarova,E.;Itkis,M. E.;McWilliams,J. L.;
Hamon,M. A.;Haddon,R. C. Solution properties of graphite
and graphene. J.Am.Chem.Soc.2006,128,77201.

194.Stankovich,S.;Piner,R. D.;Nguyen,S. T.;Ruoff,R. S.
Synthesis and exfoliation of isocyanate-treated graphene oxide
nanoplatelets. Carbon 2006,44,33427.

195.Liu,N.;Luo,F.;Wu,H.;Liu,Y.;Zhang,C.;Chen,J. One step
ionic-liquid assisted electrochemical synthesis of ionic-liquid-
functionalized graphene sheets directly from graphene. Adv.

196.Salavagione,H. J.;Gomez,M. A.;Martınez G. Polymeric
modification of graphene through esterification of graphite oxide
and poly(vinyl alcohol). Macromolecules 2009,42,63314.

197.Worsley,K. A.;Ramesh,P.;Mandal,S. K.;Niyogi,S.;Itkis,M.
E.;Haddon,R. C. Soluble graphene derived from graphite
fluoride. Chem.Phys.Lett.2007,445,516.

198.Bai,H.;Xu,Y.;Zhao,L.;Li, C.;Shi,G. Non-covalent
functionalization of graphene sheets by sulfonated polyaniline.

199.Kuilla,T.;Bhadra,S.;Yao,D.;Kim,N. H.;Bose,S.;Lee,J. H.
Recent advances in graphene based polymer composites. Prog.

200.Bourlinos,A. B.;Gournis,D.;Petridis,D.;Szabo,T.;Szeri,A.;
Dekany,I. Graphite oxide: chemical reduction to graphite and

surface modification with primary aliphatic amines and amino
acids. Chem.Mater.2003,19,60505.

201.Lomeda,J. R.;Doyle,C. D.;Kosynkin,D. V.;Hwang,W. F.;
Tour,J. M. Diazonium functionalization of surfactant-wrapped
chemically converted graphene sheets. J.Am.Chem.Soc.2008,

202.Park,S.;An,J.;Piner,R. D.;Jung,I.;Yang,D.;Velamakanni,
A.;Nguyen,S. T.;Rouff,R. S. Aqueous suspension and
characterization of chemically modified graphene sheets. Chem.

203.Zhang,D. D.;Zua,S. Z.;Hana,B. H. Inorganicorganic hybrid
porous materials based on graphite oxide sheets. Carbon 2009,

Y.;Zhang,X.;Chen,Y.;A graphene hybridmaterial covalently
functionalized with porphyrin: synthesis andoptical limiting
property. Adv.Mater.2009,21,12759.

205.Xu,Y.;Bai,H.;Lu,G.;Li,C.;Shi,G.Flexible graphene films
via the filtration of water-soluble noncovalent functionalized
graphene sheets. J.Am.Chem.Soc.2008,130,58567.

206.Jaegfeldt,H.;Kuwana,T.;Johansson,G. Electrochemical
stability of catechols with a pyrene side chain strongly adsorbed
on graphite electrodes for catalytic oxidation of
dihydronicotinamide adenine dinucleotide. J.Am.Chem.Soc.

207.Bai,H.;Xu,Y.;Zhao,L.;Li,C.;Shi,G. Non-covalent
functionalization of graphene sheets by sulfonated polyaniline.

208.Kovtyukhova,N. I.;Ollivier,P. J.;Martin,B. R.;Mallouk,T. E.;
Chizhik,S. A.;Buzaneva,E. V.;Gorchinskiy, A. D. Layer-by-
layer assembly of ultrathin composite films from micron-sized
graphite oxide sheets and polycations. Chem.Mater.1999,11,

209.Bekyarova,E.;Itkis,M. E.;Ramesh,P.;Berger,C.;Sprinkle,M.;
de Herr,W. A.;Haddon,R. C. Chemical modification of
epitaxial graphene: spontaneous grafting of aryl groups. J.Am.

210.Liu,J.;Yang,W.;Tao,L.;Li,D.;Boyer,C.;Davis,T. P.
Thermosensitive graphene nanocomposites formed using
pyrene-terminal polymers made by RAFT polymerization. J.
Polym.Sci.Part.A Polym.Chem.2010,48,42533.

211.Gajendran,P.;Saraswathi,R. Enhanced electrochemical growth
and redox characteristics of poly(o-phenylene-diamine) on a
carbon nanotube modified glassy carbon electrode and its
application in the electrocatalytic reduction of oxygen. J.Phys.
Chem. C2007,111,113208.

212.Fisch,R.;Harris,A. B. Critical behavior of random resistor
networks near the percolation threshold. Phys.Rev.B 1978,18,

Sandler,J. K. W.;Kirk,J. E.;Kinloch,I. A.;Shaffer,M. S. P.;
,A. H. Ultra-low electrical percolation threshold in
-nanotube-epoxy composites. Polymer 2003,44,58939.
214.Li,H. C.;Lu,S. Y.;Syue,S. H.;Hsu,W. K.;Chang,S. C.
Conductivity enhancement of carbon nanotube composites by
electrolyte addition. Appl.Phys.Lett.2008,93,033104/13.

215.Li,J.;Ma,P. C.;Chow,W. S.;To,C. K.;Tang,B. Z.;Kim,J. K.
Correlations between percolation threshold, dispersion state, and
aspect ratio of carbon nanotubes. Adv.Funct.Mater.2007,17,

216.Choi,E. S.;Brooks,J. S.;Eaton,D. L.;Al Haik,M. S.;Hussaini,
M. Y.;Garmestani,H.;Li,D.;Dahmen,K. Enhancement of
thermal and electrical properties of carbon nanotube polymer
composites by magnetic field processing. J.Appl.Phys.2003,

Ma,P. C.;Kim,J. K.;Tang,B. Z. Effects of silane
functionalization on the properties of carbon nanotube/epoxy

. Compos.Sci.Technol.2007,67,296572.
218.Tamburri,E.;Orlanducci,S.;Terranova,M. L.;Valentine,F.;
Palleschi,G.;Curulli, A.;Brunetti,F.;Passeri,D.;Alippi,A.;
Rossi,M. Modulation of electrical properties in single walled
carbon nanotube/conducting polymer composites. Carbon 2005,

219.Ruschau,G. R.;Newnham,R. E. Critical volume fractions in
conductive composites. J.Comp.Mater.1992,26,2727-35.

ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 266

220.Tuncer,E.;Serdyuk,Y. V.;Gubanski,S. M.Dielectric
mixtures-electrical properties and Modeling. IEEE Trans.

221.Psarras,G. C. Hopping conductivity in polymer matrixmetal
particles composites.Compos.A 2006,37,1545-53.

222.Sahimi,M.Heterogeneous Materials: Linear transport and
optical properties”.New York; London: Springer, 2003.

223.Compton,R. G.Electron tunneling in chemistry: chemical
reactions over large distances, Amsterdam: Elsevier, page 123,

224.Balberg,I.A comprehensive picture of the electrical phenomena
in carbon black-polymer composites. Carbon 2002,40,139-43.

225.Fiske,T.;Gokturk, H.;Kalyon,D. M.Percolation in magnetic

226.Hunt,A.Percolation theory for flow in porous media, New
York: Springer, 2005.

227.McCullough,R. L.Generalized combining rules for predicting
transport properties of composite materials. Compos.Sci.

228.Sevick,E. M.;Manson,P. A.;Ottino,J. M.Monte carlo
calculations of cluster statistics in continuum models of
composite morphology. J.Chem.Phys.1988,88,1198-206.

229.Vanderzande,C.Lattice models of polymers, Cambridge:
Cambridge Univ. Press, 1998.

230.Newman,M. E. J.;Ziff,R. M. A fast Monte Carlo algorithm for
site or bond percolation. Phys.Rev.E2001,64,1-16.

231.Feng,D.;Jin,G. Introduction to condensed matter physics,
Vol. 1, World Scientific, page 107, 2005.

232.Meester,R.;Roy,R.Continuum percolation, Cambridge Univ.
Press 1996.

233.Luckham,P. F. Manipulating forces between surfaces:
applications in colloid science and biophysics. Adv.Colloid.
Interface Sci.2004,111,2947.

234.Hamaker,H. C. London-van der Waals forces attraction
between spherical particles. Physica 1937,4,105872.

235.Fenelonov,V. B. Introduction to physical chemistry of
supramolecular structure of adsorbents and catalysts formation.
Novosibirsk: Press house of Siberian Division of Russian
Academy of Sciences; 2002.

236.Adamczyk,Z. Particle adsorption and deposition: role of
electrostatic interactions. Adv.Coll.Interface Sci.2003,100-
102,267-347. Gennes,P. G. Polymers at an interface: a simplified view.
Adv.Colloid.Interface Sci.1987,27,189-209.

238.Tanford,C. The hydrophobic effect: formation of micelles and
biological membranes. 2nd ed. New York: Wiley; 1980.

239.Tadros,T. Interaction forces between particles containing
covalently grafted or adsorbed polymer layers. Adv.Colloid.
Interface Sci.2003,104,191226.

240.Deryaguin,B. V.;Landau,L. D. DLVO theory. Acta
Physicochim. USSR, 1941,14,633.

241.Verwey,E. J. W.;Overbeek,J. T. G. Theory of stability of
lyophobic colloids. Amsterdam: Elsevier; 1948.

A. K. A review on the mechanical and electrical properties of
graphite and modified graphite reinforced polymer composites.

243.Spitalsky,Z.;Tasis,D.;Papagelis,K.;Galiotis,C. Carbon
nanotubepolymer composites: Chemistry, processing,
mechanical and electrical properties. Prog.Polym.Sci.2010,35,

Chen,G. H.;Lu,J. G.;Wu,D. J. The electrical properties of
graphite nanosheet filled immiscible polymer blends
. Mater.
245.Wen,S.;Chung,D. D. L. Double percolation in the electrical
conduction in carbon fiber reinforced cement-based materials.
Carbon 2007,45,263-7.

246.Khatua,B. B.;Lee,D. J.;Kim,H. Y.;Kim,J. K. Effect of
Organoclay Platelets on Morphology of Nylon-6 and poly
(ethyleneranpropylene) rubber blends. Macromolecules 2004,

247.Stankovich,S.;Piner,R. D.;Chen,X.;Wu,N.;Nguyen,S. T.;
Ruoff,R. S.Stable aqueous dispersions of graphitic
nanoplatelets via the reduction of exfoliated graphite oxide in the

presence of poly(sodium 4-styrenesulfonate). J.Mater.Chem.

Chen,R.;Xu,C. Preparation and properties of graphene
nanosheets-polystyrene nanocomposites via in situ emulsion

249.Wang,W.;Liu,Y.;Li,X.;You,Y. Synthesis and characteristics
of poly(methyl methacrylate)/expanded graphite
nanocomposites. J.Appl.Polym.Sci.2006,100,142731.

250.Luong,N. D.;Hippi,U.;Korhonen,J. T.;Soininen,A. J.;
Ruokolainen,J.;Johansson,L.-S.;Nam,J. D.;Sinh,L. H.;
Seppala,J. Enhanced mechanical and electrical propertiesof
polyimide film by graphene sheets via in situ polymerization.
Polymer 2011,52,523742.

251.Hornbostel,B.;Potschke,P.;Kotz,J.;Roth,S. Single-walled
carbon nanotubes/polycarbonate composites: basic electrical and
mechanical properties”. Physica Status Solidi B 2006,243,3445

252.Pan,Y. X.;Yu,Z. Z.;Ou,Y. C.;Hu,G. H. A new process of
fabricating electrically conducting nylon 6/graphite
nanocomposites via intercalation polymerization. J.Polym.Sci.
Part B Polym.Phys.2000,38,162633.

253.Saeed,K.;Park,S. Y. Preparation and properties of multiwalled
carbon nanotube/polycaprolactone nanocomposites. J.Appl.

254.Ounaies,Z.;Park,C.;Wise,K. E.;Siochi,E. J.;Harrison,J. S.
Electrical properties of single wall carbon nanotube reinforced
polyimide composites. Compos.Sci.Technol.2003,63,1637

255.Celzard,A.;McRae,E.;Mareche,J. F.;Furdin,G.;Dufort,M.;
Deleuze,C. Composites based on micron-sized exfoliated
graphite particles: electrical conduction, critical exponents and
anisotropy. J.Phys.Chem.Solids 1996,57,7158.

256.Zheng,W.;Wong,S. C. Electrical conductivity and dielectric
properties of PMMA/expanded graphite composites. Compos.

257.Stankovich,S.;Dikin,D.A.;Dommett,G. H. B.;Kohlhaas,K.
M.;Zimney,E. J.;Stach,E. A.;Piner,R. D.;Nguyen,S. T.;
Ruoff,R. S. Graphene-based composite materials. Nature 2006,

Shrivastava,N. K.;Kar,P.;Maiti,S.;Khatua,B. B. A facile
route to develop
electrical conductivity with minimum possible
-wall carbon nanotube (MWCNT) loading in poly(methyl
methacrylate)/MWCNT nanocomposites
. Polym.Int.2012,61,
259.Maiti,S.;Shrivastava,N. K.;Suin,S.;Khatua,B. B.
Polystyrene/MWCNT/graphite nanoplate nanocomposites:
efficient electromagnetic interference shielding material through
graphite nanoplateMWCNTgraphite nanoplate networking.
ACS Appl.Mater. Inter.2013,5,4712-24.

260.Spitalsky,Z.;Krontiras,C. A.;Georga,S. N.;Galiotis,C. Effect
of oxidation treatment of multiwalled carbon nanotubes on the
mechanical and electrical properties of their epoxy composites.
Compos.A 2009,40,77883.

261.Zhang,H. B.;Zheng, W. G.;Yan,Q.;Yang,Y.;Wang,J.;Lu,Z.
H.;Ji,G. Y.;Yu,Z. -Z. Electrically conductive polyethylene
terephthalate/graphene nanocomposites prepared by melt
compounding. Polymer 2010,51,11916.

262.Zheng,W.;Lu,X.;Wong,S. C. Electrical and mechanical
properties of expanded graphite-reinforced high-density
polyethylene. J.Appl.Polym.Sci.2004,91,27818.

263.Goldel,A.;Kasaliwal,G. R.;Potschke,P.;Heinrich,G. The
kinetics of CNT transfer between immiscible blend phases during
melt mixing. Polymer 2012,53,411-21.

264.Goldel,A.;Kasaliwal,G.;Potschke,P. Selective localization
and migration of multiwalled carbon nanotubes in blends of
polycarbonate and poly(styrene-acrylonitrile). Macromol.Rapid.

265.Sathpathy,B. K.;Weidisch,R.;Potschke,P.;Janke,A. Tough-
to-brittle transition in multiwalled carbon nanotube
(MWNT)/polycarbonate nanocomposites. Compos.Sci.

Development of conductive network of multiwalled carbon

ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 267

nanotubes in polycarbonate melt. Polym.Compos.2011,32,97

Logakis,E.;Pandis,C.;Potschke,P.;Pionteck,J. A comparative
study on the electrical and mechanical behaviour of multi-walled
carbon nanotube composites prepared by diluting a masterbatch
with various types of polypropylene. J.Appl.Polym.Sci.2009,

268.Song,Y. S.;Youn,J. R. Influence of dispersion states of carbon
nanotubes on physical properties of epoxy nanocomposites.
Carbon 2005,43,137885.

269.Shrivastava,N. K.;Khatua,B. B. Development of electrical
conductivity with minimum possible percolation threshold in
multi-wall carbon nanotube/polystyrene composites. Carbon

270.Chauvet,O.;Benoit,J. M.;Corraze,B. Electrical, magneto-
transport and localization of charge carriers in nanocomposites
based on carbon nanotubes. Carbon 2004,42,94952.

Bell,S. E. J.;Brennan,G. P.;Bein,D.;Lemoine,P.;Quinn,J. P.
Polyethylene multiwalled carbon nanotube composites.
Polymer 2005,46,822232.

Maiti,S.;Shrivastava,N. K.;Khatua,B.B. Reduction of
percolation threshold through double percolation in melt
polycarbonate/acrylonitrile butadiene styrene/multiwall carbon

nanotubes elastomer nanocomposites
. Polym.Compos.2013,
273.Maiti,S.;Khatua,B. B. Properties of polycarbonate (PC)/multi-
wall carbon nanotube (MWCNT) nanocomposites prepared by
melt blending. J.Nanosci.Nanotechnol.2011,11,8613-20.

274.Maiti,S.;Suin,S.;Shrivastava,N. K.;Khatua,B. B. Low
percolation threshold in polycarbonate/multiwalled carbon
nanotubes nanocomposites through melt blending with
poly(butylene terephthalate). J.Appl.Polym.Sci.2013,130,

275.Maiti,S.;Suin,S.;Shrivastava,N. K.;Khatua,B. B.Low
percolation threshold in melt-blended PC/MWCNT
nanocomposites in the presence of styrene acrylonitrile (SAN)
copolymer: Preparation and characterizations. Synth.Met.2013,

276.Maiti,S.;Suin,S.;Shrivastava,N. K.;Khatua,B. B.Low
percolation threshold and high electrical conductivity in melt-
blended polycarbonate/multiwall carbon nanotube
nanocomposites in the presence of poly(e-caprolactone). Polym.
Eng.Sci.2013, DOI:10.1002/pen.23600.

277.Maiti,S.;Shrivastava,N. K.;Suin,S.;Khatua,B. B.A strategy
for achieving low percolation and high electrical conductivity in
melt-blended polycarbonate (PC)/multiwallcarbon nanotube
(MWCNT) nanocomposites: electrical and thermo-mechanical
properties. eXPRESS Polym.Lett.2013,7,50518.

278.Kim,K. H.;Jo,W. H. A strategy for enhancement of
mechanical and electrical properties of polycarbonate/multi-
walled carbon nanotube composites. Carbon 2009,47,112634.

279.Potschke,P.;Bhattacharyya,A. R.;Janke,A.;Pegel,S.;
B.;Cech,J. Melt mixing as method to disperse carbon
nanotubes into thermoplastic polymers. Fuller.Nanotub.Carbon

280.Ramasubramaniam,R.;Chen,J.;Liu,H. Homogeneous carbon
nanotube/polymer composites for electrical applications. Appl.

281.Potschke,P.;Fornes, T. D.;Paul,D. R. Rheological behaviour
of multiwalled carbon nanotubes/polycarbonate composites.
Polymer 2002,43,324755.

Rheological and dielectrical characterization of melt mixed
polycarbonatemultiwalled carbon nanotube composites.
Polymer 2004,45,886370.

283.Pötschke,P.;Bhattacharyya A. R.;Janke,A.;Goering,H. Melt
mixing of polycarbonate/multi-wall carbon nanotube
composites. Compos.Interf.2003,10,389404.

284.Pötschke,P.;Bhattacharyya,A. R.;Janke,A. Carbon nanotube-
filled polycarbonate composites produced by melt mixing and
their use in blends with polyethylene. Carbon 2004,42,9659.

285.Pötschke,P.;Bhattacharyya,A. R.;Janke,A. Melt mixing of
polycarbonate with multiwalled carbon nanotubes: microscopic
studies on the state of dispersion. Eur.Polym.J.2004,40,137

286.Satapathy,B. K.;Weidisch,R.;Pötschke,P.;Janke,A. Tough-
to-brittle transition in multiwalled carbon nanotube
(MWNT)/polycarbonate nanocomposites. Compos.Sci.

287.Bhagat,N. A.;Shrivastava,N. K.;Suin,S.;Maiti,S.;Khatua,B.
B. Development of electrical conductivity in
PP/HDPE/MWCNT nanocomposite by melt mixing at very low
loading of MWCNT. Polym.Compos.2013,34,787-98.

288.Stephan,C.;Nguyen,T. P.;Lahr,B.;Blau,W.;Lefrant,S.;
Chauvet,O. Raman spectroscopy and conductivity
measurements on polymer-multiwalled carbon nanotubes
composites. J.Mater.Res.2002,17,396400.

289.Kim,H. M.;Kim, K.;Lee,C. Y.;Joo,J.;Cho,S. J.;Yoon,H. S.;
Pejakovic,D. A.;Yoo,J. W.;Epstein,A. J. Electrical
conductivity and electromagnetic interference shielding of
multiwalled carbon nanotube composites containing Fe catalyst.

290.Sundaray,B.;Subramanian,V.;Natarajan,T. S.;Krishnamurthy,
K. Electrical conductivity of a single electrospun fiber of
poly(methyl methacrylate) and multiwalled carbon nanotube
nanocomposite. Appl.Phys.Lett.2006,88,143114 (1-3).

291.Benoit,J. M.;Corraze,B.;Lefrant,S.;Blau,W. J.;Bernier,P.;
Chauvet,O. Transport properties of PMMAcarbon nanotubes
composites. Synth.Met.2001,121,12156.

Du,F.;Scogna,R. C.;Zhou,W.;Brand,S.;Fischer,J. E.;Winey,
. I. Nanotube networks in polymer nanocomposites: rheology
and electrical conductivity
. Macromolecules 2004,37,904855.
Du,F.;Fischer,J. E.;Winey,K. I. Coagulation method for
preparing singlewalled carbon nanotube/poly(methyl

methacrylate) composites
and their modulus, electrical
conductivity, and thermal stability
. J.Polym.Sci.B 2003,41,
294.Peng,H.;Sun,X. Highly aligned carbon nanotube/polymer
composites with much improved electrical conductivities. Chem.

295.Kim,H. M.;Kim,K.;Lee,S. J.;Joo,J.;Yoon,H. S.;Cho,S. J.;
Lyu,S. C.;Lee,C. J. Charge transport properties of composites
of multiwalled carbon nanotube with metal catalyst and polymer:
application to electromagnetic interference shielding. Curr.

296.Chang,T. E.;Kisliuk,A.;Rhodes,S. M.;Brittain,W. J.;
Sokolov,A. P. Conductivity and mechanical properties of well-
dispersed single-wall carbon nanotube/polystyrene composite.
Polymer 2006,47,77406.

Hermant,M. C.;Verhulst,M.;Kyrylyuk,A. V.;Klumperman,
.;Koning,C. E. The incorporation of single-walled carbon
nanotubes into polymerised high internal phase emulsions to

create conductive foams with a low percolation threshold
298.Tchoul,M. N.;Ford,W. T.;Ha,M. L. P.;Chavez-Sumarriva,I.;
Grady,B. P.;Lolli,G.;Resasco,D. E.;Arepalli,S. Composites
of single-walled carbon nanotubes and polystyrene: preparation
and electrical conductivity. Chem.Mater.2008,20,31206.

299.Grossiord,N.;Miltner,H. E.;Loos,J.;Meuldijk,J.;Mele,B. V.;
Koning,C. E. On the crucial role of wetting in the preparation of
conductive polystyrenecarbon nanotube composites. Chem.

300.Shrivastava,N. K.;Suin,S.;Maiti,S.;Khatua,B. B.Ultralow
electrical percolation threshold in poly(styrene-co-
acrylonitrile)/carbon nanotube nanocomposites. Ind.Eng.Chem.

301.Gojny,F. H.;Wichmann,M. H. G.;Fiedler,B.;Kinloch,I. A.;
Bauhofer,W.;Windle,A. H.;Schulte,K. Evaluation and
identification of electrical and thermal conduction mechanisms in
carbon nanotube/epoxy composite. Polymer 2006,47,203645.

302.Thostenson,E. T.;Chou,T. W. Processingstructuremulti-
functional property relationship in carbon nanotube/epoxy
composites. Carbon 2006,44,30229.

303.Yuen,S. M.;Ma,C. C.;Wu,H. H.;Kuan,H. C.;Chen,W. J.;
Liao,S. H.;Hsu,C. W.;Wu,H. -L. Preparation and thermal,
electrical, and morphological properties of multiwalled carbon
 nanotube and epoxy composites. J.Appl.Polym.Sci.2007,103,

304.Thostenson,E. T.;Ziaee,S.;Chou,T. W. Processing and
electrical properties of carbon nanotube/vinyl ester
nanocomposites. Compos.Sci.Technol.2009,69,8014.

Sandler,J.;Shaffer,M. S. P.;Prasse,T.;Bauhofer,W.;Schulte,
.;Windle,A. H. Development of a dispersion process for
carbon nanotubes in an epoxy matrix and the resulting electrical

. Polymer 1999,40,596771.
306.Allaoui,A.;Bai,S.;Cheng,H. M.;Bai,J. Mechanical and
electrical properties of a MWNT/epoxy composite. Compos.

307.Liu,L.;Etika,K. C.;Liao,K. S.;Hess,L. A.;Bergbreiter,D. E.;
Grunlan,J. C. Comparison of covalently and noncovalently
functionalised carbon nanotubes in epoxy. Macromol.Rapid.

308.Santos,A. S.;Leite,T.;Furtado,C. A.;Welter,C.;Pardini,L. C.;
Silva,G. G. Morphology, thermal expansion, and electrical
conductivity of multiwalled carbon nanotube/epoxy composites.

Characterization of multiwall carbon nanotubes and influence of
surfactant in the nanocomposite processing. Carbon 2003,41,

310.Moisala,A.;Li,Q.;Kinloch,I. A.;Windle,A. H. Thermal and
electrical conductivity of single-and multi-walled carbon
nanotubeepoxy composites. Compos.Sci.Technol.2006,66,

Glass transition temperature depression at the percolation
threshold in carbon nanotubeepoxy resin and polypyrroleepoxy
resin composites. Macromol.Rapid.Comm.2005,26,3904.

312.Kim,B.;Lee,J.;Yu,I. Electrical properties of single-wall
carbon nanotube and epoxy composites. J.Appl.Phys.2003,94,

DC and AC conductivity of carbon nanotubespolyepoxy
composites. Macromolecules 2003,36,518794.

Lacabanne,C. Effect of palmitic acid on the electrical
conductivity of carbon nanotubesepoxy resin composites.
Macromolecules 2003,36,967880.

315.Gorrasi,J.;Sarno,M.;Di Bartolomeo,A.;Sannino,D.;
Ciambelli,P.;Vittoria,V. Incorporation of carbon nanotubes
into polyethylene by high energy ball milling: morphology and
physical properties. J.Polym.Sci.B 2007,45,597606.

Alamo,R. G. Low electrical conductivity threshold and
crystalline morphology of single-walled carbon nanotubes/high
density polyethylene nanocomposites characterized by SEM,
Raman spectroscopy and AFM. Polymer 2007,48,475164.

Zhang,Q.;Rastogi,S.;Chen,D.;Lippits,D.;Lemstra,P. J. Low
percolation threshold in single
-walled carbon nanotube/high
density polyethylene composites prepared by melt processing

. Carbon 2006,44,77885.
318.Isaji,S.;Bin,Y.;Matsuo,M. Electrical conductivity and
selftemperature-control heating properties of carbon nanotubes
filled polyethylene films. Polymer 2009,50,104653.

319.Xi,Y.;Yamanaka,A.;Bin,Y.;Matsuo,M. Electrical properties
of segregated ultrahigh molecular weight
polyethylene/multiwalled carbon nanotube composites. J.Appl.

320.Chen,Q.;Bin,Y.;Matsuo,M. Characteristics of ethylene-
methyl methacrylate copolymer and ultrahigh molecular weight
polyethylene composite filled with multiwall carbon nanotubes
prepared by gelation/crystallization from solutions.
Macromolecules 2006,39,652836.

321.Bin,Y.;Kitanaka,M.;Zhu,D.;Matsuo,M. Development of
highly oriented polyethylene filled with aligned carbon nanotubes
by gelation/crystallization from solutions. Macromolecules

K. Electrical and mechanical properties of carbon
nanotube/ultrahighmolecular-weight polyethylene composites

prepared by a filler prelocalization method. J.Appl.Polym.Sci.

323.Seo,M. K.;Park,S. J. Electrical resistivity and rheological
behaviors of carbon nanotubes-filled polypropylene composites.

324.Tchmutin,I. A.;Ponomarenko,A. T.;Krinichnaya,E. P.;Kozub,
G. I.;Efimov,O. N. Electrical properties of composites based on
conjugated polymers and conductive fillers. Carbon 2003,41,

325.Hernandez,Y. R.;Gryson,A.;Blighe,F. M.;Cadek,M.;
Nicolosi,V.;Blau,W. J.;Gunko,Y. K.;Coleman,J. N.
Comparison of carbon nanotubes and nanodisks as percolative
fillers in electrically conductive composites. Scripta.Mater.

326.Shaffer,M. S. P.;Windle,A. H. Fabrication and characterization
of CNTPVA composites. Adv.Mater.1999,11,93741.

Lisunova,M. Electrical and thermophysical behaviour of PVC
MWCNT nanocomposites. Compos.Sci.Technol.2008,68,

Choi,C. S.;Park,B. J.;Choi,H. J. Electrical and rheological
characteristics of poly(vinyl acetate)/multi
-walled carbon
nanotube nanocomposites
. Diam.Rel.Mater.2007,16,11703.
Gunlan,J. C.;Mehrabi,A. R.;Bannon,M. V.;Bahr,J. L.
Water-based singlewalled-nanotube-filled polymer composite
with an exceptionally low percolation threshold
. Adv.Mater.
330.Mitchell,C. A.;Krishnamoorti,R. Dispersion of single-walled
carbon nanotubes in poly(ε-caprolactone). Macromolecules

331.Zhang,D.;Kandadai,M. A.;Cech,J.;Roth,S.;Curran,S. A.
Poly(l-lactide)/multiwalled carbon nanotube composite:
characterization and biocompatibility evaluation. J.Phys.Chem.
B 2006,110,129105.

332.Wu,D.;Zhang,Y.;Zhang,M.;Yu,W. Selective localization of
multiwalled carbon nanotubes in poly(-caprolactone)/polylactide
blend. Biomacromolecules 2009,10,41724.

Electrical and optical properties of conducting polymer
fullerene and conducting polymercarbon nanotube composites.

334.Musumeci,A. W.;Silva,G. G.;Liu,J. W.;Martens,W. N.;
Waclawik,E. R. Structure and conductivity of multi-walled
carbon nanotube/poly(3-hexylthiophene) composite films.
Polymer 2007,48,166778.

335.Kuila,B.;Malik,S.;Batabyal,S.;Nandi,A. In situ synthesis of
soluble poly(hexylthiophene)/MWCNT composite: morphology,
structure and conductivity. Macromolecules 2007,40,27887.

336.Singh,I.;Bhatnagara,P. K.;Mathur,P. C.;Kaur,I.;Bharadwaj,
L. M.; Pandey,R. Optical and electrical characterization of
conducting polymer single walled carbon nanotube composite
films. Carbon 2008,46,11414.

337.Musa,I.;Baxendale,M.;Amaratunga,G. A. J.;Eccleston,W.
Properties of regioregular poly(3-octylthiophene)/multi-wall
carbon nanotube composites. Synth.Met.1999,102,1250.

Kymakis,E.;Alexandrou,I.;Amaratunha,G. A. J. Single-
walled carbon nanotube
-polymer composites: electrical, optical
and structural investigation
. Synth.Met.2002,127,5962.
339.Kymakis,E.;Amaratunga,G. A. J. Electrical properties of
singlewall carbon nanotubepolymer composite films. J.Appl.
Phys.2006,99,084302 (1-7).

340.Krause,B.;Pötschke,P.;Häuser,L. Influence of small scale
melt mixing conditions on electricalresistivity of carbon
nanotubepolyamide composites. Compos.Sci.Technol.2009,

341.Kodgire,P. V.;Bhattacharyya,A. R.;Bose,S.;Gupta,N.;
Kulkarni,A. R.;Misra,A. Control of multiwall carbon
nanotubes dispersion in polyamide 6 matrix: an assessment
through electrical conductivity. Chem.Phys.Lett.2006,432,

342.Kim,H. S.;Park,B. H.;Yoon,J. S.;Jin,H. J. Nylon
610/functionalized multiwalled carbon nanotubes composites by
in situ interfacial polymerization. Mater.Lett.2007,61,22514.
ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 269

343.Jiang,X.;Bin,Y.;Matsuo,M. Electrical and mechanical
properties of polyimidecarbon nanotubes composites fabricated
by in situ polymerization. Polymer 2005,46,741824.

In situ preparation of polyimide composites based on
functionalised carbon nanotubes. Macromol.Mater.Eng.2009,

345.Mclachlan,D. S.;Chiteme,C.;Park,C.;Wise,K. E.;Lowther,S.
E.;Lillehei,P. T.;Siochi,E. J.;Harrison,J. S. AC and DC
percolative conductivity of single wall carbon nanotube polymer
composites. J.Polym.Sci.Part B: Polym.Phys.2005,43,3273

346.Yuen,S. M.;Ma,C. C. M.;Lin,Y. Y.;Kuan,H. C. Preparation,
morphology and properties of acid and amine modified
multiwalled carbon nanotube/polyimide composite. Compos.

347.Delozier,D. M.;Watson,K. A.;Smith,J. G.;Clancy,T. C.;
Connell,J. W. Investigation of aromatic/aliphatic polyimides as
dispersants for single wall carbon nanotubes. Macromolecules

R. H. Deformationmorphology correlations in electrically
conductive CNTthermoplastic polyurethane nanocomposites.
Polymer 2005,46,440520.

349.Yoo,H. J.;Jung,Y. C.;Sahoo,N. G.;Cho,J. W. Polyurethane
carbon nanotube nanocomposites prepared by in-situ
polymerization with electroactive shape memory. J.Macromol.
Sci.Part B: Phys.2006,45,44151.

350.Kwon,J. Y.;Kim,H. D. Preparation and properties of acid-
treated multiwalled carbon nanotube/waterborne polyurethane
nanocomposites. J.Appl.Polym.Sci.2005,96,595604.

351.Anand,A.;Agarwal,U.;Rani,J. CNTreinforced PET
nanocomposite by melt compounding. J.Appl.Polym.Sci.

352.Hernandez,J. J.;Garcia-Gutierrez,M. C.;Nogalas,A.;Rueda,D.
A.;Guinea,I.;Ezquerra,T. A. Influence of preparation
procedure on the conductivity and transparency of SWCNT-
polymer composites. Compos.Sci.Technol.2009,69,186772.

353.Ghose,S.;Watson,K. A.;Sun,K. J.;Criss,J. M.;Siochi,E. J.;
Connell,J. W. High temperature resin carbon nanotube
composite fabrication. Compos.Sci.Technol.2006,66,1995

354.Vast,L.;Mekhalif,Z.;Fonseca,A.;Nagy,J. B.;Delhalle,J.
Preparation and electrical characterization of a silicone
elastomer composite charged with multi-wall carbon nanotubes
functionalized with 7-octenyltrichlorosilane. Compos.Sci.

355.Lahiff,E.;Leahy,R.;Coleman,J. N.;Blau,W. J. Physical
properties of novel free standing polymer nanotube thin films.
Carbon 2006,44,15259.

356.Liu,C. H.;Huang, H.; Wu,Y.;Fan,S. S. Thermal conductivity
improvement of silicone elastomer with CNT loading.Appl.

357.Khosla,A.;Gray,B. L. Preparation, characterisation and
micromoulding of multi-walled carbon nanotube
polydimethoxysiloxane conducting nanocomposite polymer.

358.Worsley,M. A.;Kucheyev,S. O.;Kuntz,J. D.;Hamza,A. V.;
Satcher,J. H.;Baumann,T. F. Stiff and electrically conductive
composites of carbon nanotube aerogels and polymers. J.Mater.

359.Philip,B.;Xie,J.Chandrasekhar A, Abraham J, Varadan VK. A
novel nanocomposite from multiwalled carbon nanotubes
functionalized with a conducting polymer. Smart Mater.Struct.

360.Karim,M. R.;Lee,C. J.;Lee,M. S. Synthesis and
characterization of conducting polythiophene/carbon nanotubes
composites. J.Polym.Sci.Part A: Polym.Chem.2006,44,

361.Grimes,C. A.;Mungle,C.;Kouzoudis,D.;Fang,S.;Eklund,P.
C. The 500MHz to 5.50GHz complex permittivity spectra of
single-wall carbon nanotube-loaded polymer composites. Chem.

362.Gilmore,K. J.;Moulton,S. E.;Wallace,G. G. Incorporation of
carbon nanotubes into the biomedical polymer poly(styrene-b-
isobutylene-b-styrene). Carbon 2007,45,40210.

Dendievel,R.;Cavaille,J. Y.;Forro,L. Multiwalled carbon
nanotube/polymer nanocomposites: processing and properties. J.
Polym. Sci. Part B Polym. Phys. 2005,43,118697.

364.Dufresne.A.;Paillet,M.;Putaux,J. L.;Canet,R.;Carmona,F.;
Delhaes,P.;Cui,S. Processing and characterization of
CNT/poly(styrene-co-butyl acrylate) nanocomposites. J.Mater.

Pedroni,L. G.;Soto-Oviedo,M. A.;Rosolen,J. M.;Felisberti,
. I.;Nogueira,A. F. Conductivity and mechanical properties
composites based on MWCNTs and styrenebutadiene
styrene block copolymers
. J.Appl.Polym.Sci.2009,112,
366.Bokobza,L. Mechanical, electrical and spectrometric
investigations of carbon nanotube-reinforced elastomers. Vibr.

Ha,M. L. P.;Grady,B. P.;Lolli,G.;Resasco,D. E.;Ford,W. T.
Composites of single-walled carbon nanotubes and styrene-
isoprene copolymer lattices
. Macromol.Chem.Phys.2007,208,
368.Li,Y.;Shimizu,H. Toward a stretchable, elastic, and
electrically conductive nanocomposites: morphology and
properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/
multiwalled carbon nanotube composites fabricated by high shear
processing. Macromolecules 2009,42,258793.

369.Landi,B. J.;Raffaelle,R. P.;Heben,M. J.;Alleman,J. L.;
VanDerveer,W.;Gennett,T. Single wall carbon nanotube
nafion composite actuators. Nano Lett.2002,2,132932.

370.Curran,S. A.;Ajayan,P. M.;Blau,W. J.;Carroll,D. L.;
Coleman,J. N.;Dalton,A. B.;Davey,A. P.;Drury,A.;
McCarthy,B.;Maier,S.;Strevens,A. A composite from
and carbon nanotubes: a novel material for molecular
optoelectronics. Adv.Mater.1998,10,10913.

371.Coleman,J. N.;Curran,S.;Dalton,A. B.;Davey,A. P.;Mc
Carthy,B.;Blau,W.;Barklie,R. C. Physical doping of a
conjugated polymer with carbon nanotubes. Synth.Met.1999,

372.Coleman,J. N.;Curran,S.;Dalton,A. B.;Davey,A. P.;
McCarthy,B.;Blau,W.;Barklie,R. C. Percolation-dominated
conductivity in a conjugatedpolymercarbonnanotube
composite. Phys.Rev.B 1998,58,74925.

373.Dang,Z. M.;Wang,L.;Yin,Y.;Zhang,Q.;Lei,Q. Q. Giant
dielectric permittivities in functionalized carbon
nanotube/electroactive-polymer nanocomposites. Adv.Mater.

374.Yang,J.;Xu,T.;Lu,A.;Zhang,Q.;Fu,Q. Electrical properties
of poly(phenylene sulfide)/multiwalled carbon nanotube
composites prepared by simple mixing and compression. J.

375.Karim,M. R.;Lee,C. J.;Chowdhury,A. M. S.;Nahar,N.;Lee,
M. S. Radiolytic synthesis of conducting polypyrrole/carbon
nanotube composites. Mater.Lett.2007,61,168892.

376.Wu,T. M.;Lin,S. H. Characterization and electrical properties
of polypyrrole/multiwalled carbon nanotube composites
synthesized by in situ chemical oxidative polymerization. J.
Polym.Sci.Part B Polym.Phys.2006,44,14138.

Synthesis and characterization of carbon nanotube/polypyrrole
coreshell nanocomposites via in situ inverse microemulsion. J.
Polym.Sci.Part A Polym.Chem.2005,43,610515.

378.Fan,J.;Wan,M.;Zhu,D.;Chang,B.;Pan,Z.;Xie,S. Synthesis,
characterizations and physical properties of carbon nanotubes
coated by conducting polypyrrole. J.Appl.Polym.Sci.1999,

379.Zhang,X.;Zhang,J.;Wang,R.;Zhu,T.;Liu,Z. Surfactant-
directed polypyrrole/CNT nanocables: synthesis, characterization,
and enhanced electrical properties. Chem.Phys.Chem.2004,5,

380.Sainz,R.;Benito,A. M.;Martinez,M. T.;Galindo,J. F.;Sotres,
J.;Baro,A. M.;Corraze,B.;Chauvet,O.;Dalton,A. B.;
Baughman,R. H.;Maser,W. K. A soluble and highly functional
ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 270

polyanilinecarbon nanotube composite. Nanotechnology 2005,

P.;Chan,A. S. C. Carbon nanotube-polyaniline hybrid
materials. Eur.Polym.J.2002,38,2497501.

382.Long,Y.;Chen,Z.;Zhang,X.;Zhang,J.;Liu,Z. Synthesis and
electrical properties of carbon nanotube polyaniline composites.

Huang,J. E.;Li,X. H.;Xu,J. C.;Li,H. L. Well-dispersed
-walled carbon nanotube/polyaniline composite films.
arbon 2003,41,27316.
384.Blanchet,G. B.;Fincher,C. R.;Gao,F. Polyaniline nanotube
composites: a high-resolution printable conductor. Appl.Phys.

385.Chatterjee,T.;Yurekli,K.;Hadjiev, V.G.;Krishnamoori, R.
Single-walled carbon nanotube dispersions in poly(ethylene
oxide). Adv.Funct.Mater.2005,15,18328.

386.Munoz,E.;Suh,D. S.;Collins,S.;Selvidge,M.;Dalton,A. B.;
Kim,B. G.;Razal,J. M.;Ussery,G.;Rinzler,A. G.;Martinez,
M. T.;Baughman,R. H. Highly conducting carbon
nanotube/polyethyleneimine composite fibers. Adv.Mater.

Han,S. J.;Kim,B.;Suh,K. D. Electrical properties of a
composite film of poly(acrylonitrile) nanoparticles coated with

carbon nanotubes
. Macromol.Chem.Phys.2007,208,37783.
388.Yuan,W. Z.;Lam,J. W. Y.;Shen,X. Y.;Sun,J. Z.;Mahtab,F.;
Zheng,Q.;Tang,B. Z. Functional polyacetylenes carrying
mesogenic and polynuclear aromatic pendants: polymer
synthesis, hybridization with carbon nanotubes, liquid
crystallinity, light emission, and electrical conductivity.
Macromolecules 2009,42,252331.

389.Jovic,N.;Dudic,D.;Montone,A.;Antisari,M. V.;Mitric,M.;
Djokovic,V. Temperature dependence of the electrical
conductivity of epoxy/expanded graphite nanosheet composites.

390.Potts,J. R.;Murali,S.;Zhu,Y.;Zhao,X.;Ruoff,R. S.
Microwave-exfoliated graphite oxide/polycarbonate
composites. Macromolecules 2011,44,6488-95.

391.Eda,G.;Chhowalla,M. Graphene-based composite thin films
for electronics. Nano Lett.2009,9,8148.

392.Celzard,A.;McRae,E.;Mareche,J. F.;Furdin,G.;Dufort,M.;
Deleuze,C. Composites based on micron-sized exfoliated
graphite particles: electrical conduction, critical exponents and
anisotropy. J.Phys.Chem.Solids 1996,57,7158.

C.;Gao,H.;Chen,Y. Electromagnetic interference shielding of
graphene/epoxy composites. Carbon 2009,47,9225.

394.Zhang,H. B.;Zheng,W. G.;Yan,Q.;Jiang,Z. G.;Yu,Z. -Z.
The effect of surface chemistry of graphene on rheological and
electrical properties of polymethyl methacrylate composites.
Carbon 2012,50,511725.

395.Li,W.;Tang,X. Z.;Zhang,H. B.;Jiang,Z. G.;Yu,Z. Z.;
Du,X. S.;Mai,Y. -W. Simultaneous surface functionalization
and reduction of graphene oxide with octadecylamine for
electrically conductive polystyrene composites. Carbon 2011,

396.Zou,J. F.;Yu,Z. Z.;Pan,Y. X.;Fang,X. P.;Ou,Y. C.
Conductive mechanismof polymer/graphite conducting
composites with low percolation threshold. J.Polym.Sci.Part B

397.Kim,H.;Macosko,C. W. Processingproperty relationships of
polycarbonate/graphene nanocomposites. Polymer 2009,50,

Q. The preparation of high performance and conductive poly
(vinyl alcohol)/graphene nanocomposite via reducing graphite
oxide with sodium hydrosulfite. Compos.Sci.Technol.2011,

399.Feng,R.;Guan,G.;Zhou,W.;Li,C.;Zhang,D.;Xiao,Y. In-
situ synthesis of poly(ethylene terephthalate)/graphene
composites using a catalyst supported on graphite oxide. J.

Fabrication and characterization of nylon 6/foliated graphite

electrically conducting nanocomposite. J.Polym.Sci.Part B

Zhao,Y. F.;Xiao,M.;Wang,S. J.;Ge,X. C.;Meng,Y. Z.
Preparation and properties of electrically conductive
PPS/expanded graphite nanocomposites
. Compos.Sci.Technol.
Du,X. S.;Xiao,M.;Meng,Y. Z. Facile synthesis of highly
conductive polyaniline/graphite nanocomposites
. Eur.Polym.J.
403.Tang,L. C.;Wan,Y. J.;Yan,D.;Pei,Y. B.;Zhao,L.;Li,Y.
B.;Wu,L. B.;Jiang,J. X.;Lai,G. -Q. The effect of
graphene dispersion on the mechanical properties of
graphene/epoxy composites. Carbon 2013,60,1627.

404.Hsiao,S. T.;Ma,C. -M.;Tien,H. W.;Liao,W. H.;Wang,Y.
S.;Li,S. M.;Huang,Y. -C. Using a non-covalent
modification to prepare a high electromagnetic interference
shielding performance graphene nanosheet/water-borne
polyurethane composite. Carbon 2013,60,5766.

405.Zhou,H.;Yao,W.;Li,G.;Wang,J.;Lu,Y. Graphene/poly(3,4-
ethylenedioxythiophene) hydrogel with excellent mechanical
performance and high conductivity. Carbon 2013,59,495502.

406.Chen,G.;Weng,W.;Wu,D.;Wu,C. PMMA/graphite
nanosheets composite and its conducting properties. Eur.Polym.

Preparation and electrical conductivity of graphene/ultrahigh
molecular weight polyethylene composites with a segregated
structure. Carbon 2012,50,45969.

408.Chen,G.;Wu,C.;Weng,W.;Wu,D.;Yan,W. Preparation of
polystyrene/graphite nanosheet composites. Polymer 2003,44,

Q. The preparation of high performance and conductive poly
(vinyl alcohol)/graphene nanocomposite via reducing graphite
oxide with sodium hydrosulfite. Compos.Sci.Technol.2011,

410.Wang,H.;Hao,Q.;Yang,X.;Lu,L.;Wang,X. Graphene oxide
doped polyaniline for supercapacitors. Electrochem.Comm.

411.Zhang,H. B.;Zheng,W. G.;Yan,Q.;Yang,Y.;Wang,J. W.;
Lu,Z. H.;Ji,G. Y.;Yu,Z. -Z. Electrically conductive
polyethylene terephthalate/graphene nanocomposites prepared by
melt compounding. Polymer 2010; 51: 1191-6.

412.Layek,R. K.;Samanta,S.;Nandi,A. K. Graphene sulphonic
acid/chitosan nano biocomposites with tunable mechanical and
conductivity properties. Polymer 2012,53,2265-73.

413.Zheng,D.;Tang,G.;Zhang,H. B.;Yu,Z. Z.;Yavari,F.;
Koratkar,N.;Lim,S. H.;Lee,M. -W. In situ thermal reduction
of graphene oxide for high electrical conductivity and low
percolation threshold in polyamide 6 nanocomposites. Compos.

414.Shen,Y.;Jing,T.;Ren,W.;Zhang,J.;Jiang,Z. G.;Yu,Z. Z.;
Dasari,A. Chemical and thermal reduction of graphene oxide
and its electrically conductive polylactic acid nanocomposites.

Milani,M. A.;González,D.;Quijada,R.;Basso,N. R. S.;
,M. L.;Azambuja,D. S.;Galland,G. B.
Polypropylene/graphene nanosheet nanocomposites by in situ
polymerization: Synthesis, characterization and fundamental

. Compos.Sci.Technol.2013,84,17.
416.Miller,J. R.;Simon,P. Electrochemical capacitors for energy
management. Science 2008,321,651-2.

417.Jang,B. Z.;Liu,C.;Neff,D.;Yu,Z.;Wang,M. C.;Xiong,W.;
Zhamu,A. Graphene surface-enabled lithium ion-exchanging
cells: next-generation high-power energy storage devices. Nano

Chen,Y. Supercapacitor devices based on graphene materials.
J.Phys.Chem.C 2009,113,13103-7.

419.Khilari,S.;Pandit,S.;Ghangrekar,M. M.;Das,D.;Pradhan,D.
Graphene supported α-MnO2nanotubes as a cathode catalyst for
improved power generation and wastewater treatment in single-
chambered microbial fuel cells. RSC Adv.2013,3,7902-11.

420.Chen,P. C.;Shen,G.;Shi,Y.;Chen,H.;Zhou,C. Preparation
and characterization of flexible asymmetric supercapacitors based
 on transition-metal-oxide nanowire/single-walled carbon
nanotube hybrid thin-film electrodes. ACS Nano.2010,4,4403-

421.Li,Y.;Zhao,X.;Xu,Q.;Zhang,Q.;Chen,D. Facile preparation
and enhanced capacitance of the polyaniline/sodium alginate
nanofiber network for supercapacitors. Langmuir 2011,27,

422.Li,J.;Xie,H.;Li,Y.;Liu,J.;Li,Z. Electrochemical properties
of graphene nanosheets/polyaniline nanofibers composites as
electrode for supercapacitors. J.Power Sources 2011,196,

423.Wang,H.;Hao,Q.;Yang,X.;Lu,L.;Wang,X. A
nanostructured graphene/polyaniline hybrid materialfor
supercapacitors. Nanoscale 2010,2,2164-70.

Preparation of a graphene nanosheet/polyaniline composite with
high speci
fic capacitance. Carbon 2010,48,487-93.
Enhanced capacitance and rate capability of
graphene/polypyrrole composite as electrode material for
supercapacitors. J.Power Sources 2011,196,5990-6.

426.Liu,S.;Liu,X.;Li,Z.;Yang,S.;Wang,J. Fabrication of free-
standing graphene/polyaniline nanofibers composite paper via
electrostatic adsorption for electrochemical supercapacitors.
New J.Chem.2011,35,369-74.

427.Wang,D. W.;Li,F.;Zhao,J.;Ren,W.;Chen,Z. G.;Tan,J.;
Wu,Z. S.;Gentle,I.;Lu,G. Q.;Cheng,H. -M. Fabrication of
graphene/polyaniline composite paper via in situ anodic
electropolymerization for high-performance flexible electrode.
ACS Nano 2009,3,1745-52.

428.Maiti,S.;Khatua,B. B. Electrochemical and electrical
performances of cobalt chloride (CoCl2) doped polyaniline
(PANI)/graphene nanoplate (GNP) composite. RSC Adv.2013,

429.Sahoo,S.;Dhibar,S.;Hatui,G.;Bhattacharya,P.;Das,C. K.
Graphene/polypyrrole nanofiber nanocomposite as electrode
material for electrochemical supercapacitor. Polymer 2013,54,

430.Kiamahalleh,M. V.;Zein,S. H. S. Multiwalled carbon
nanotubes based nanocomposites for supercapacitors. A Review
of Electrode Materials 2012, 7,1230002 (1-27).

431.Burke,A. Ultracapacitors: why, how, and where is the
technology. J.Power Sources 2000,91,37-50.

432.Frackowiak,E.;Beguin,F. Carbon materials for the
electrochemical storage of energy in capacitors. Carbon2001,

433.Halper,M. S.;Ellenbogen,J. C. Supercapacitors: A brief
overview, MITRE Nanosystems Group, McLean, Virginia

434.Conway,B. E.;Birss,V.;Wojtowicz,J. The role and utilization
of pseudocapacitance for energy storage by supercapacitors. J.
Power Sources 1997,66,1-14.

435.Wang,S.;Ji,L.;Wu,B.;Gong,Q.;Zhu,Y.;Liang,J. Influence
of surface treatment on preparing nanosized TiO2 supported on
carbon nanotubes. Appl.Surf.Sci.2008,255,3263-6.

436.Kim,I. H.;Kim,J. H.;Cho,B. W.;Lee,Y. H.;Kim,K. B.
Synthesis and electrochemical characterization of vanadium
oxide on carbon nanotube film substrate for pseudocapacitor
applications. J.Electrochem.Soc.2006,153,A989-96.

437.Burke,A. R&D considerations for the performance and
application of electrochemical capacitors. Electrochim.Acta.

F. Supercapacitors based on conducting polymers/nanotubes
composites. J.Power Sources 2006,153,413-8.

439.Peng,C.;Zhang,S.;Jewell,D.;Chen,G. Z. Carbon nanotube
and conducting polymer composites for supercapacitors. Prog.

E. Supercapacitors from nanotubes/polypyrrole composites.

441.Snook,G. A.;Wilson,G. J.;Pandolfo,A. G. Mathematical
functions for optimisation of conducting polymer/activated
carbon asymmetric supercapacitors. J.Power Sources 2009,186,

442.Pell,W. G.;Conway,B. E. Peculiarities and requirements of
asymmetric capacitor devices based on combination of capacitor
and battery-type electrodes. J.Power Sources 2004,136,334-

443.Pasquier,A. D.;Plitz,I.;Menocal,S.;Amatucci,G. A
comparative study of Li-ion battery, supercapacitor and
nonaqueous asymmetric hybrid devices for automotive
applications. J.Power Sources 2003,115,171-8.

444.Dubal,D. P.;Gund,G. S.;Lokhande,C. D.;Holze,R.
Decoration of spongelike Ni(OH)2nanoparticles onto MWCNTs
using an easily manipulated chemical protocol for
supercapacitors. ACS Appl.Mater.Inter.2013,5,2446−54.

445.Yu,D.;Dai,L. Self-assembled graphene/carbon nanotube
hybrid films for supercapacitors. J.Phys.Chem.Lett.2010, 1,

446.Bi,R. R.;Wu,X. L.;Cao,F. F.;Jiang,L. Y.;Guo,Y. G.;
Wan,L. -J. Highly dispersed RuO2nanoparticles on carbon
nanotubes: facile synthesis and enhanced supercapacitance
performance. J.Phys.Chem.C 2010,114,2448-51.

447.Kim,B.;Chung,H.;Kim,W. Supergrowth of aligned carbon
nanotubes directly on carbon papers and their properties as
supercapacitors. J.Phys.Chem.C 2010,114,152237.

448.Zhang,L.;Holt,C. M. B.;Luber,E. J.;Olsen,B. C.;Wang,H.;
Danaie,M.;Cui,X.;Tan,X.;Lui,V. W.;Kalisvaart,W. P.;
Mitlin,D. High rate electrochemical capacitors from three-
dimensional arrays of vanadium nitride functionalized carbon
nanotubes. J.Phys.Chem.C 2011,115,2438193.

Aravinda,L. S.;Nagaraja,K. K.;Bhat,K. U.;Bhat,B. R.
Magnetron sputtered MoO3/carbon nanotube composite
lectrodes for electrochemical supercapacitor. J.Electroanal.
450.You,B.;Wang,L.;Yao,L.;Yang,J. Three dimensional N-
doped graphene-CNT networks for supercapacitor. Chem.

451.Tao,T.;Zhang,L.;Jiang,H.;Li,C. Functional mesoporous
carbon-coated CNT network for high-performance
supercapacitors. New J.Chem.2013,37,1294-7.

452.Bhattacharya,P.;Das,C. K. In situ synthesis and
characterization of cufe10al2o19/mwcnt nanocomposites for
supercapacitor and microwave-absorbing applications. Ind.Eng.

453.Fan,J.;Mi,H.;Xu,Y.;Gao,B. In situ fabrication of Ni(OH)2
nanofibers on polypyrrole-based carbon nanotubes for high-
capacitance supercapacitors. Mater.Res.Bull.2013,48,13425.

Facile fabrication of multiwalled carbon nanotube/α-MnOOH
coaxial nanocable films by electrophoretic deposition for
supercapacitors. J.Power Sources 2013,235,95-104.

455.Mahmood,Q.;Yun,H. J.;Kim,W. S.;Park,H. S. Highly
uniform deposition of MoO3nanodots on multiwalled carbon
nanotubes for improved performance of supercapacitors. J.
Power Sources 2013,235,187-92.

456.Su,A. D.;Zhang,X.;Rinaldi,A.;Nguyen,S. T.;Liu,H.;Lei,Z.;
Lu,L.;Duong,H. M. Hierarchical porous nickel oxidecarbon
nanotubes as advanced pseudocapacitor materials for
supercapacitors. Chem.Phys.Lett.2013,561562,6873.

457.Ji,J.;Zhang,L. L.;Ji,H.;Li,Y.;Zhao,X.;Bai,X.;Fan,X.;
Zhang,F.;Ruoff,R. S. Nanoporous Ni(OH)2thin film on 3D
ultrathin-graphite foam for asymmetric supercapacitor. ACS
Nano. DOI: 10.1021/nn4021955.

de Oliveira,H. P.;Sydlik,S. A.;Swager,T. M. Supercapacitors
from free
-standing polypyrrole/graphene nanocomposites. J.
.Chem.C 2013,117,10270−6.
459.Peng,L.;Peng,X.;Liu,B.;Wu,C.;Xie,Y.;Yu,G. Ultrathin
two-dimensional MnO2/graphene hybrid nanostructures for high-
performance, flexible planar supercapacitors. Nano Lett.2013,

460.Yang,S.;Song,X.;Zhang,P.;Gao,L. Facile synthesis of
nitrogen-doped graphene-ultrathin MnO2sheet composites and
their electrochemical performances. ACS Appl.Mater.Inter.

461.Fan,W.;Zhang,C.;Tjiu,W. W.;Pramoda,K. P.;He,C.;Liu,T.
Graphene-wrapped polyaniline hollow spheres as novel hybrid
electrode materials for supercapacitor applications. ACS Appl.
ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 272

462.Li,Z. F.;Zhang,H.;Liu,Q.;Sun,L.;Stanciu,L.;Xie,J.
Fabrication of high-surface-area graphene/polyaniline
nanocomposites and their application in supercapacitors. ACS

463.Zhang,Z.;Xiao,F.;Guo,Y.;Wang,S.;Liu,Y. One-Pot Self-
assembled three-dimensional TiO2graphene hydrogel with
improved adsorption capacities and photocatalytic and
electrochemical activities. ACS Appl.Mater.Inter.2013,5,

464.Li,L.;Raji,A. R. O.;Fei,H.;Yang,Y.;Samuel,E. L. G.;Tour,
J. M. Nanocomposite of polyaniline nanorods grown on
graphene nanoribbons for highly capacitive pseudocapacitors.
ACS Appl.Mater.Inter.DOI: 10.1021/am4013165.

Solvothermal one-step synthesis of Ni−Al layered double
hydroxide/carbon nanotube/reduced graphene oxide sheet ternary
nanocomposite with ultrahigh capacitance for supercapacitors.

466.Luo,J.;Jang,H. D.;Huang,J. Effect of sheet morphology on
the scalability of graphene-based ultracapacitors. ACS Nano

Freestanding three-dimensional graphene/mno2composite
networks as ultralight and flexible supercapacitor electrodes.
ACS Nano 2013,7,17482.

M.;Liu,L. A new partially reduced graphene oxide
nanosheet/polyaniline nanowafer hybrid as supercapacitor
electrode material. Energy Fuels 2013,27,568−75.

469.Li,Y.;Zhao,X.;Yu,P.;Zhang,Q. Oriented arrays of
polyaniline nanorods grown on graphite nanosheets for an
electrochemical supercapacitor”. Langmuir 2013,29,493−500.

470.Li,Y.;Zhao,N.;Shi,C.;Liu,E.;He,C. Improve the
supercapacity performance of MnO2decorated graphene by
controlling the oxidization extent of graphene. J.Phys.Chem.C

Preparation of graphene oxide/polyaniline nanocomposite with
assistance of supercritical carbon dioxide for supercapacitor
electrodes. Ind.Eng.Chem.Res.2012,51,14390−8.

Ma,Y. One-step electrophoretic deposition of reduced graphene
oxide and Ni(OH)2composite films for controlled syntheses
supercapacitor electrodes. J.Phys.Chem.B 2013,117,

Mengliu,L.;Mei,Y.;Songmei,L. Polyaniline-grafted graphene
hybrid with amide groups and its use in supercapacitors. J.Phys.
Chem.C 2012,116,19699−708.

Zhang,H.;Bhat,V. V.;Gallego,N. C.;Contescu,C. I. Thermal
treatment effects on ch
arge storage performance of graphene-
based materials for supercapacitors
. ACS Appl.Mater.Inter.
475.Kuila,T.;Mishra,A. K.;Khanra,P.;Kim,N. H.;Uddin,M. E.;
Lee,J. H. Facile method for the preparation of water dispersible
grapheneusing sulfonated poly(ether−ether−ketone) and its
application as energy storage materials. Langmuir 2012,28,

Mei,Y.;Songmei,L. Preparation of an amide group-connected
graphene−polyaniline nanofiber hybrid and its application in
supercapacitors. ACS Appl.Mater.Inter.2012,4,2870−6.

477.Lai,L.;Yang,H.;Wang,L.;The,B. K.;Zhong,J.;Chou,H.;
Chen,L.;Chen,W.;Shen,Z.;Ruoff,R. S.;Lin,J. Preparation
of supercapacitor electrodes through selection of graphene
surface functionalities. ACS Nano 2012,6,594151.

478.Zhao,X.;Zhang,L.;Murali,S.;Stoller,M. D.;Zhang,Q.;Zhu,
Y.;Ruoff,R. S. Incorporation of manganese dioxide within
ultraporous activated graphene for high-performance
electrochemical capacitors. ACS Nano 2012,6,540412.

479.Choi,B. G.;Yang,M. H.;Hong,W. H.;Choi,J. W.;Huh,Y. S.
3D Macroporous graphene frameworks for supercapacitors with
high energy and power densities. ACS Nano 2012,6,40208.

480.Lee,J. W.;Hall,A. S.;Kim,J. D.;Mallouk,T. E. A Facile and
template-free hydrothermal synthesis of mn3o4 nanorods on
graphene sheets for supercapacitor electrodes with long cycle
stability. Chem.Mater.2012,24,1158−64.

481.Dong,X. C.;Xu,H.;Wang,X. W.;Huang,Y. X.;Chan-Park,
M. B.;Zhang,H.;Wang,L. H.;Huang,W.;Chen,P. 3D
Graphene cobalt oxide electrode for high-performance
supercapacitor and enzymeless glucose detection. ACS Nano

482.Zhang,J.;Zhao,X. S. Conducting polymers directly coated on
reduced graphene oxide sheets as high-performance
supercapacitor electrodes. J.Phys.Chem.C 2012,116,5420−6.

483.Sun,Z.;Lu,X. A solid-state reaction route to anchoring
Ni(OH)2nanoparticles on reduced graphene oxide sheets for
supercapacitors. Ind.Eng.Chem.Res.2012,51,9973−9.

484.Zhang,L.;Shi,G. Preparation of highly conductive graphene
hydrogels for fabricating supercapacitors with high rate
capability. J.Phys.Chem.C 2011,115,1720612.

Liu,Q.;Mann,T.;Yang,P.;Zhang,M.;Liu,L. Graphene
nanosheet/Ni2+/Al3+layered double-hydroxide composite as a
novel electrode for a supercapacitor. Chem.Mater.2011,23,

486.Lin,Z.;Liu,Y.;Yao,Y.;Hildreth,O. J.;Li,Z.;Moon,K.;Wong,
C. -P. Superior capacitance of functionalized graphene. J.Phys.
Chem.C 2011,115,71205.

487.Zhang,J.;Jiang,J.;Zhao,X. S. Synthesis and capacitive
properties of manganese oxide nanosheets dispersed on
functionalized graphene sheets. J.Phys.Chem.C 2011,115,

488.Mishra,A. K.;Ramaprabhu,S. Functionalized graphene-based
nanocomposites for supercapacitor application. J.Phys.Chem.
C 2011,115,1400613.

Chen,Y. L.;Hu,Z. A.;Chang,Y. Q.;Wang,H. W.;Zhang,
. Y.;Yang,Y. Y.;Wu,H. -Y. Zinc oxide/reduced graphene
oxide composites and electrochemical capacitance enhance
d by
homogeneous incorporation of reduced graphene oxide sheets in

zinc oxide matrix
. J.Phys.Chem.C 2011,115,256371.
490.Liu,A.;Li,C.;Bai,H.;Shi,G. Electrochemical deposition of
polypyrrole/sulfonated graphene composite films. J.Phys.
Chem.C 2010,114,227839.

491.Biswas,S.;Drzal,L. T. Multilayered nanoarchitecture of
graphene nanosheets and polypyrrole nanowires for high
performance supercapacitor electrodes. Chem.Mater.2010,22,

492.Wu,Q.;Xu,Y.;Yao,Z.;Liu,A.;Shi,G. Supercapacitors based
on flexible graphene/polyaniline nanofiber composite films.
ACS Nano 2010,4,196370.

493.Zhang,K.;Zhang,L. L.;Zhao,X. S.;Wu,J.
Graphene/polyaniline nanofiber composites as supercapacitor
electrodes. Chem.Mater.2010,22,1392-401.

494.Wu,M. S.;Fu,Y. -H. Tubular graphene nanoribbons with
attached manganese oxide nanoparticles for use as electrodes in
high-performance supercapacitors. Carbon 2013,60,23645.

495.Hu,L.;Tu,J.;Jiao,S.;Hou,J.;Zhua,H.;Fray,D. J. In situ
electrochemical polymerization of a nanorod-PANIGraphene
composite in a reverse micelle electrolyte and its application in a
supercapacitor. Phys.Chem.Chem.Phys.2012,14,15652-6.

496.Li,J.;Xie,H.;Li,Y.;Liu,J.;Li,Z. Electrochemical properties
of graphene nanosheets/polyaniline nanofibers composites as
electrode for supercapacitors. J.Power Sources 2011,196,

497.Wang,H.;Hao,Q.;Yang,X.;Lu,L.;Wang,X. A
nanostructured graphene/polyaniline hybrid material for
supercapacitors. Nanoscale 2010,2,2164-70.

Preparation of a graphene nanosheet/polyaniline composite with
high specific capacitance. Carbon 2010,48,487-93.

Enhanced capacitance and rate capability of
graphene/polypyrrole composite as electrode material for
supercapacitors. J. Power Sources2011,196,5990-6.

500.Wang,D. W.;Li,F.;Zhao,J.;Ren,W.;Chen,Z. G.;Tan,J.;
Wu,Z. S.;Gentle,I.;Lu,G. Q.;Cheng,H. -M. Fabrication of
graphene/polyaniline composite paper via in situ anodic
ReviewArticle 2018, 3(4), 230-273Advanced Materials Proceedings

Copyright © 2018 VBRI Press 273

electropolymerization for high-performance flexible electrode.
ACS Nano 2009,3,1745-52.

501.Wu,Q.;Xu,Y.;Yao,Z.;Liu,A.;Shi,G. Supercapacitors based
on flexible graphene/polyaniline nanofiber composite films.
ACS Nano 2010,4,1963-70.

502.Li,J.;Xie,H.;Li,Y. Fabrication of graphene oxide/polypyrrole
nanowire composite for high performance supercapacitor
electrodes. J.Power Sources 2013,241,388-95.

503.Wang,G.;Tang,Q.;Bao,H.;Li,X.;Wang,G. Synthesis of
hierarchical sulfonated graphene/MnO2/polyaniline ternary
composite and its improved electrochemical performance. J.
Power Sources 2013,241,231-8.

Preparation of graphene nanosheets/SnO2composites by pre-
reduction followed by in-situreduction and their electrochemical
performances. Mater.Chem.Phys.2013,141,18.

505.Xiao,N.;Lau,D.;Shi,W.;Zhu,J.;Dong,X.;Hng,H. H.;Yan,
Q. A simple process to prepare nitrogen-modified few-layer
graphene for a supercapacitor electrode. Carbon 2013,57,184

506.Gupta,A.;Akhtar,A. J.;Saha,S. K. In-situgrowth of
P3HT/graphene composites for supercapacitor applications”.

507.Kim,M.;Hwang,Y.;Kim,J. Graphene/MnO2-based composites
reduced via different chemical agents for supercapacitors. J.
Power Sources 2013,239,225-33.

508.Xiang,C.;Li,M.;Zhi,M.;Manivannan,A.;Wu,N. A reduced
graphene oxide/Co3O4composite for supercapacitor electrode. J.
Power Sources 2013,226,65-70.

509.Gund,G. S.;Dubal,D. P.;Patil,B. H.;Shinde,S. S.;Lokhande,
C. D. Enhanced activity of chemically synthesized hybrid
graphene oxide/Mn3O4composite for high performance
supercapacitors. Electrochimica Acta 2013,92,20515.

510.Sun,D.;Yan,X.;Lang,J.;Xue,Q. High performance
supercapacitor electrode based on graphene paper via flame-
induced reduction of graphene oxide paper. J.Power Sources

511.Zhou,Z.;Wu,X. -F. Graphene-beaded carbon nanofibers for
use in supercapacitor electrodes: Synthesis and electrochemical
characterization. J.Power Sources 2013,222,410-6.

512.Maiti,S.;Das,A. K.;Karan,S. K.;Khatua,B. B. Carbon
nanohorn-graphene nanoplate hybrid: An excellent electrode
material for supercapacitor application.J.Appl.Polym.Sci.

513.Maiti,S.;Khatua,B. B. Polyaniline integrated carbon nanohorn:
A superior electrode materials for advanced energy storage.
eXPRESS Polym.Lett.2014,12,895-907.

514.Das,A. K.;Maiti,S.;Khatua,B. B. High performances
electrode materials prepared through in-situ polymerization of
aniline in the presence of zinc acetate and graphene nanoplatelets
for supercapacitor applications. J.Electroanal.Chem.2015,739