Authors

1 Department of Physics, University of Limpopo, University Road, Mankweng, Polokwane, 0727, South Africa.

2 National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, University, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.

Abstract

The mechano-chemical technique was employed to synthesise cobalt and indium single and double doped as well as the undoped ZnO nanopowder samples. The X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) results confirm that the prepared samples were of hexagonal wurzite form. A new peak was observed in the diffraction pattern of the
In doped ZnO nanopowders. Doping the ZnO nanoparticles with Co and In did not significantly affect the lattice parameters, even though the average grain sizes were found to be reduced. The morphology of the samples revealed by the scanning electron microscopy (SEM) images appear to be more spherical. The excitation wavelength of 350 nm was used in the photoluminescence (PL) study where various defects related emissions were observed for the doped and undoped ZnO nanoparticles. The energy band gap of the prepared samples was calculated from the ultraviolet-visible spectroscopy
(UV-Vis) data. It was found that the doped ZnO nanoparticles had smaller energy band gap compared to the undoped ZnO nanoparticles. The Raman experiment were performed at the excitation wavelength of 514.532 nm and E2 (high) mode had the most intense peak. Copyright © 2018 VBRI Press.
 

Keywords

1.Rani, G.; Sahare, P.D.; J. Mater. Sci. Technol., 2013, 29, 1035.
DOI:1016/j.jmst.2013.08.015

2.Soitah, T. N.; Chunhui, Y.; Liang, S.; Sci. Adv. Mater., 2010, 2,
534.

DOI:10.1166/sam.2010.1120
4006008000.0
0.5
1.0
1.5
2.0
2.5
3.0


Absorbance
Wavelength (nm)
undoped ZnO
5% Co-ZnO
5% In-ZnO
5% (Co-In)-ZnO
400500600700
0
200000
400000
600000


PL Intensity (arb.units)
Wavelength (nm)
undoped ZnO
5% Co-ZnO
5% In-ZnO
5% (Co-In)-ZnO
 


Research Article2018, 3(4), 213-217Advanced Materials Proceedings


Copyright © 2018 VBRI Press 217


3.Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang P. D.; Adv.
Mater., 2002, 14, 158.

4.Chakraborty, A.; Mondal, T.; Bera, S. K.;Sen, S. K.; Ghosh, R.;
Paul G. K.; Mater. Chem. Phys., 2008, 112, 162.

5.Li, Y.; Cheng, C.; Dong, X.; Gao, J.; Zhang H.; J. Semicond.,
2009, 30, 38.

6.Djerdj, I.; Jaglicic, Z.; Arcon, D.; Niederberger M.; Nanoscale,
2010, 2, 1096.

7.Dinesha, M. L.; Jayanna, H. S.; Mohanty, S.; Ravi, S.; J. Alloys
Compd., 2010, 490, 618.

8.N ́emeth, J.; Rodriguez-Gattorno, G.; Diaz, D.; V ́azquez-Olmos,
A.R.; D ́ek ́any, I.; Langmuir, 2004, 20, 2855.

9.Singh, J.; Mohapatra, S.; Adv. Mat. Lett., 2015, 6, 924.

10.Spanhel, L.; Anderson, M.A.; J. Am. Chem. Soc., 1991, 113, 2826.

11.Maswanganye, M. W.; Rammutla, K. E.; Mosuang,T. E.;
Mwakikunga, B. W.; Bertrand, S. T.; Maaza, M.; Adv. Mat. Lett.,
2017, 8(1) , 37.

12.Liu, J.; Luo, T.; Meng, F.; Qian, K.; Wan, Y.; Liu, J.; J. Phys.
Chem. C, 2010, 114, 4887.

13.Shannon, R.; Acta Cryst. A, 1976, 32, 751.

14.Zhang, Y.; Mu, J.; Nanotechnology, 2007, 18, 075606.

15.Zak, A. K.; Majid, W. H. A.; Abrishami, M. E.; Yousefi, R.; Solid
State Sci., 2011, 13, 251.

16.Fan, Z.; Lu, J. G.; J.Nanosci. Nanotechnol., 2005, 5, 1561.

17.Sharma, D.; Sharma, S.; Kaith, B. S.; Rajput, J.; Kaur, M.; App.
Surf. Sci., 2011, 257, 9661.

18.Mhlongo, G. H.; Motaung, D. E.; Nkosi, S. S.; Swart, H. C.;
Malgas, G. F.; Hollie, K. T.; Mwakikunga, B. W.; App. Surf. Sci.,
2014, 293, 62.

19.Damen, T. C.; Porto, S. P. S.; Tell, B.; “Raman Effect in Zinc
Oxide,” Phys. Rev., 1966, 142, 570.

20.Panda, S. K.; Jacob, C.; Appl. Phys. A, 2009, 96, 805.

21.Wang, Y.; Li, X.; Wang, N.; Quan, X.; Chen, Y.; Sep. Purif.
Technol, 2008, 62, 727.

22.Schumm, M.; Geurts, J.; Neder, R.;Dissertation, Uniersität
Würzburg, Germany, 2008, 45-53.

23.Kabongo,G. L.; Mhlongo, G. H.; Malwela, T.; Mothudi, B. M.;
Hillie, K. T.; Dhlamini, M. S.; J. Alloys Compd., 2014, 591, 156.

24.Wang, C.; Shen, E.; Wang, E.; Gao, L.; Kang, Z.; Tian, C.; Lan,
Y.; and Zhang, C.; Mater. Lett., 2005, 59, 2867.

25.Chen, J.; Li, J.;. Xiao, G.; Yang, X.; J. Alloys Compd., 2011, 509,
740.

26.Motaung, D. E.; Makgwane, P. R.; Ray, S. S.; Mater. Lett., 2015,
139, 475.

27.Willander, M.; Nur, O.; Sadaf, J. R.; Qadir, M. I.; Zaman, S.;
Zainelabdin, A.; Bano, N.; Hussain, I.; Materials,2010,3, 2643.

(a) Scientific article
1.Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L; Chem. Soc. Rev.,
2011, 40, 696.

DOI:10.1039/c0cs00136h


(b) Book

2. Tiwari, A.; Kobayashi, H. (Eds.); Responsive Materials and
Methods; Wiley: USA,2013.

DOI: 10.5185/sbm-2010-01


(c) Book Chapter

3. Nam, K.; Kishida, A. Application of the Collagen as Biomaterials,
In Biomedical Materials and Diagnostic Devices; Tiwari, A.;
Ramalingam, M.; Kobayashi, H.; Turner, A.P.F. (Eds.); Wiley:
USA, 2012, pp. 3-18.

DOI: 10.1021/bk-2010-1045.ch001