1 Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, India

2 Glass Science & Technology Section, Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata, 700032, India


This study exemplifies the effects of 5 wt.% Pb2+ addition replacing the same Zn2+ content on crystallization and microstructure of 10B2O3-16Al2O3-39SiO2-12MgO-12MgF2-4K2O-1Li2O-1AlPO4 (wt.%) glass-ceramic composite. Increase of linear thermal-expansion (6.93 to 7.18×10-6/K at 50-600°C) in substituting Zn2+ by Pb2+ is attributed to the field-strength of cations. Opaque crystalline glass-ceramics are derived from the transparent glasses (synthesized by single-step melt-quenching at 1500OC) by controlled heat-treatment at 1050°C and the predominant crystalline-phase was identified as fluorophlogopite mica, KMg3AlSi3O10F2. FFESEM of the ZnO containing glass-ceramics revealed that 100-200 µm sized plate-like crystals are in ‘well-packed interlocked arrangement’; which changed to ‘nanocrystalline microstructure’ combined of ‘spherical droplet like’ nanocrystals (crystal size = 10-50 nm) in attendance of PbO. Decrease in linear thermal-expansion (11.03 to 7.93 × 10-6/K at 50-700°C) due to the substitution of ZnO is ascribed to the crystallization inhibiting tendency of PbO towards boroaluminosilicate system. Thermal-expansion of ZnO containing glass-ceramic is large (> 11 × 10-6/K at 50-700 and
50-800°C) which can exhibit their enough thermal shock resistivity to be suitable for high-temperature sealing application. Copyright © 2017 VBRI Press.


1.Grossman,D. G.J.Am.Ceram. Soc.1972,55, 446.
2.Hsiang,H-I.; Yung,S. W.; Wang,C. C. Mater.Res.Bull.2014, 60,

Kerstan, M.;Muller, M. Mater. Res. Bull.2011,46, 2456.
4.Garai, M.; Karmakar, B. Asian J. Mater. Chem. 2016, 1, 33.

5.Hamzawy, E.M.A.;Darwish, H.;Mater.Chem.Phys.2001,71,70.

6.Hoda, S.N.;Beall, G.H. “Alkaline Earth Mica Glass-ceramics” In:
J. H. Simmons, D. R. Uhlmann, G. H. Beall (Editors), Advances in
Nucleation and Crystallization in Glasses, The American Ceramic
Society, Westerville, (1982) pp. 287-300.

7.da Silveira, C. B.;de Campos, S. D.;de Castro, S. C.;Kawano, Y.
Mater. Res. Bull.1999,34, 1661.

8.McMillan, P. W.;Partridge, G. J.Mater.Sci.1972,7, 847.

10.Garai, M.;Sasmal, N.;Molla, A. R.;Singh, S. P.; Tarafder, A.;
Karmakar, B.;J. Mater. Sci.2014, 49,1612.

11.Sharma, B. I.;Goswami, M.;Sengupta, P.;Shrikhande, V. K.;Kale,
G. B.;Kothiyal G. P.Mater.Lett.2004, 58, 2423.

12.Mukherjee, D. P.;Das, S. K. Ceram.Int.2014,40,12459.

13.Sasikala, T. S.;Pavithran, C.;Sebastian, M. T. J.Mater.Sci.:
Mater.Elec.2010, 21,141.

14.Stubican, V.;Roy, R. Am.Miner.1961, 46, 32.

15.Eftekhari Yekta, B.;Hashemi Nia, S.;Alizadeh, P. J.Eu.Ceram.
Soc.2005, 25, 899.

16.Molla, A. R.;Kumar, B. V. M.;Basu, B.;J. Eu.Ceram. Soc.2009,
29, 2481.

17.Liu, C. K.;Lin, K. F.;Lee, R. Y. ECS Tran.2011, 35, 2519.

18.Garai, M.;Sasmal, N.;Karmakar, B. Ind.J.Mater.Sci.
638341, 1
19.Salman, S. M.;Salama, S. N.;Abo-Mosallam, H. A. Ceram.Int.,
20.Garai, M.;Sasmal, N.;Molla, A. R.;Tarafder, A.;Karmakar, B. J.
Mater.Sci.Tech.2015, 31,110.

21.Liu, S.;Zhao, G.;Ying, H.;Wang, J.;Han, G.;J.Non-Cryst.Solid.
2008, 354, 956.

22.Garai, M.,Sasmal, N.,Molla, A. R.,Karmakar, B.,Solid State Sci.
2015, 44, 10.

23.Garai, M.;Karmakar, B.;J.Alloys Compd.2016, 678, 360.