Authors
Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Kashmere Gate, New Delhi-110006
Abstract
Nowadays, gas sensors are fast becoming an imperative part of modern life with extensive applications in domestic safety, environmental monitoring, industrial process control, public security, medical applications and chemical warfare assessment amongst many others. The detection of minor gas leaks has been a challenging area of research, particularly in view of the hazards to human health and safety posed by toxic gases like NO2, NO, CO, NH3 etc and combustible gases like methane, hydrogen gas and some volatile organic compounds. Thus it is imperative to evolve and employ simple yet reliable gas sensing mechanisms with optimum response and selectivity towards even low concentration of analyte gas at room temperature. Most of the conventional gas sensors are based on metal-oxide semiconductors which are low-cost, exhibit good sensitivity and fast response/recovery. Zinc oxide is one such n-type semiconducting oxide, which has been widely studied for gas sensing response due to its ease of fabrication, high sensitivity and environment-friendly nature. However, the operating temperature of such sensors is usually high (>200°C) owing to the wide band-gap (3.37 eV) and high electrical resistance (kΩ-MΩ), which limits their practical utilization. In order to be used in hazard monitoring and home/workplace safety, the gas sensors need to be sensitive to gas exposure in mild operating conditions. As an alternative, more recently, graphene and its derivatives like pristine graphene (PG), reduced graphene oxide (rGO) etc. have been studied for sensing applications owing to their exceptional electronic and physical properties such as high carrier mobility at room temperature, good thermal stability, high mechanical strength, ballistic conductivity and large specific surface area. These sensors show high sensitivity at low operating temperatures (down to room temperature) towards low concentrations of analyte gas. However most of these rGO based sensors exhibit relatively longer response/recovery times than metal-oxide based gas sensors. Hence, nanocomposites formed by hybridizing graphene or its derivatives with metal-oxide nanoparticles are being explored as gas sensing materials. Combining reduced graphene oxide with zinc oxide to form hybrid nanostructures is particularly interesting because not only do they display the individual properties of the metal oxide NPs (faster response/recovery times) and of graphene (high electronic conductivity leading to efficient room temperature gas response), but may also have synergistic effects leading to better sensitivity as a gas sensing material. Here we present a review of the recent progress in rGO-ZnO nanocomposites based gas sensors. Copyright © 2018 VBRI Press.
Keywords
DOI:10.3390/s7030267
2. Yoon H. Nanomaterials. 2013;3(3):524-549.
DOI: 10.3390/nano3030524
3. Kondratowicz B, Narayanaswamy R, Persaud KC. In: Sensors and
Actuators, B: Chemical. Vol 74. ; 2001:138-144.
DOI:10.1016/S0925-4005(00)00723-1
4. Wang C, Yin L, Zhang L, Xiang D, Gao R. Sensors. 2010;10(3):
2088-2106.
DOI:10.3390/s100302088
5. Jimenez-Cadena G, Riu J, Rius FX. Analyst. 2007;132(11):1083-
1099.
DOI: 10.1039/B704562J
6. Elhaes H, Fakhry A, Ibrahim M. ScienceDirect Mater Today Proc.
2016;3(6):2483-2492.
DOI:10.1016/j.matpr.2016.04.166
7. Alenezi MR, Henley SJ, Emerson NG, Silva SRP. Nanoscale.
2014;6(1):235-247.
DOI:10.1039/C3NR04519FM a t e r i a lA n a l y t e
G a s
O p e r a t i n g
T e m p
C o n c .
( p p m )R e sp o n se
R e sp o n se /
R e c o v e r y
t i m e
R e f e r e n c e
Z n O
n a n o d i sk sA c e t o n e4 2 5 ° C1 0 0 2 5 % 2 / 4 se c[ 7 ]
Z n O
n a n o w i r e sN O 22 2 5 ° C5~ 5 0 %4 4 / 5 se c[ 8 ]
Z n O
n a n o p i l l a r2 0 0 ° C5 0 -1 0 / 2 0 se c[ 1 0 ]
r G ON H 3R T 2 5 9 . 8 %1 6 3 / 2 0 0
se c[ 2 4 ]
r G ON O 2R T 1 0 / 2 5 m i n[ 2 6 ]
Z n O / r G ON O 2R T 52 5 . 6 %1 6 5 / 4 9 9
se c[ 3 9 ]
Z n O / R G OC O R T 2 2 i n
d r y N2
2 4 . 3 %5 / 2–5 se c[ 3 8 ]
N H 3R T 1 i n
d r y N2
2 4 %
N O R T 5 i n
d r y N2
3 . 5 %2 5 / –
Z n O / R G ON H 3R T 17 . 2 %5 0 / 2 0 0 se c[ 4 0 ]
Research Article2018, 3(4), 193-198Advanced Materials Proceedings
Copyright © 2018 VBRI Press 198
8.Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG. Sensors
Actuators, B Chem. 2009; 138(1):168-173.
DOI:10.1016/j.snb.2009.02.008
9. Calestani D, Zha M, Mosca R, et al. Sensors Actuators, B Chem.
2010;144(2):472-478.
DOI:10.1016/j.snb.2009.11.009
10. Bie LJ, Yan XN, Yin J, Duan YQ, Yuan ZH. Sensors Actuators, B
Chem. 2007;126(2):604-608.
DOI:10.1016/j.snb.2007.04.011
11. Qi Q, Zhang T, Liu L, et al. Sensors Actuators, B Chem.
2008;134(1):166-170.
DOI: 10.1016/j.snb.2008.04.024
12. Wei S, Wang S, Zhang Y, Zhou M. Sensors Actuators, B Chem.
2014;192:480-487.
DOI: 10.1016/j.snb.2013.11.034
13. Ahmad MZ, Sadek AZ, Latham K, Kita J, Moos R, Wlodarski W.
Sensors Actuators, B Chem. 2013;187:295-300.
DOI:10.1016/j.snb.2012.11.042
14. Hsueh TJ, Hsu CL, Chang SJ, Chen IC. Sensors Actuators, B
Chem. 2007;126(2):473-477.
DOI:10.1016/j.snb.2007.03.034
15. Fine GF, Cavanagh LM, Afonja A, Binions R. Sensors. 2010;
10(6):5469-5502.
DOI:10.3390/s100605469
16. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. Sensors. 2012;
12(12):9635-9665.
DOI:10.3390/s120709635
17. Wallace PR. Phys Rev. 1947; 71(9):622-634.
http://link.aps.org/doi/10.1103/PhysRev.71.622
18. Novoselov KS, Geim AK, Morozov S V, et al. Science (80-). 2004;
306(5696):666 LP-669.
http://science.sciencemag.org/content/306/5696/666.abstract
19. Schedin F, Geim AK, Morozov S V, et al. Nat Mater.
2007;6(9):652-655.
http://dx.doi.org/10.1038/nmat1967
20. Basu S, Bhattacharyya P. Sensors Actuators B Chem. 2012;173:
1-21.
DOI:10.1016/j.snb.2012.07.092
21. Pei S, Cheng H-M. Carbon N Y. 2012;50(9):3210-3228.
DOI:10.1016/j.carbon.2011.11.010
22. Lerf A, He H, Forster M, Klinowski J. J Phys Chem B. 1998;
102(23):4477-4482.
DOI:10.1021/jp9731821
23. Toda K, Furue R, Hayami S. Anal Chim Acta. 2015;878:43-53.
DOI:10.1016/j.aca.2015.02.002
24. Kumar R, Kaur A. 2016;20156(2):20156.
DOI:10.1063/1.4946207
25. Papazoglou S, Tsouti V, Chatzandroulis S, Zergioti I. Opt Laser
Technol. 2016;82:163-169.
DOI:10.1016/j.optlastec.2016.03.009
26. Lu G, Ocola LE, Chen J. Appl Phys Lett. 2009;94(8):2007-2010.
DOI:10.1063/1.3086896
27. Wang Y, Zhang L, Hu N, et al. 2014:1-12.
28. Lu G, Ocola LE, Chen J. Adv Mater. 2009; 21(24):2487-2491.
DOI:10.1002/adma.200803536
29. Hummers WS, Offeman RE. J Am Chem Soc. 1958; 80(6):1339.
DOI: 10.1021/ja01539a017.
30. Marcano DC, Kosynkin D V., Berlin JM, et al. ACS Nano.
2010;4(8):4806-4814.
DOI:10.1021/nn1006368
31. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy
VB. Nat Chem. 2010;2(7):581-587.
http://dx.doi.org/10.1038/nchem.686
32. Tegou E, Pseiropoulos G, Filippidou MK, Chatzandroulis S. MEE.
2016;159:146-150.
DOI:10.1016/j.mee.2016.03.030
33. Kumar SS, Venkateswarlu P, Rao VR, Rao GN. Int Nano Lett.
2013;3(1):30.
DOI:10.1186/2228-5326-3-30
34. Saha H, Basu S, Bhattacharyya P, Basu PK. 2007 Int Work Phys
Semicond Devices. 2007:645-651.
DOI:10.1109/IWPSD.2007.4472608
35. Yang M, Dai C. Fabrication of an ammonia microsensor based on
zinc oxide. 1:6-9.
36. Hazra S, Basu S. Graphene-Oxide Nano Composites for Chemical
Sensor Applications. C. 2016;2(2):12.
DOI:10.3390/c2020012
37. Shankar P, Bosco J, Rayappan B. Sci Jet. 2015;4(January
2015):126.
38. Singh G, Choudhary A, Haranath D, et al. Carbon N Y. 2012;
50(2):385-394.
DOI:10.1016/j.carbon.2011.08.050
39. Liu S, Yu B, Zhang H, Fei T, Zhang T. Sensors Actuators, B
Chem. 2014;202(2):272-278.
DOI:10.1016/j.snb.2014.05.086
40. SunZ, Yang Z, Li X, et al. 2015;36(12):1376-1379.
DOI:10.1109/LED.2015.2496177
41. Li X, Wang J, Xie D, et al. Sensors Actuators, B Chem.
2015;221(2):1290-1298.
DOI:10.1016/j.snb.2015.07.102
42. Naik G, Krishnaswamy S.2016;(January):1-13.
43. Yao Y, Chen X, Guo H, Wu Z. Appl Surf Sci. 2011;257(17):7778-
7782.
DOI:10.1016/j.apsusc.2011.04.028
44. Yao Y, Chen X, Li X, Chen X, Li N. Sensors Actuators B Chem.
2014;191:779-783.
DOI:10.1016/j.snb.2013.10.076
45. Yuan Z, Tai H, Bao X, Liu C, Ye Z, Jiang Y. Mater Lett. 2016;
174:28-31.
DOI:10.1016/j.matlet.2016.01.122
46. C. H. Kim, S. W. Yoo, D. W. Nam, S. Seo and J. H. Lee. IEEE
Electron Device Lett. 33(7):1084-1086.