International Association of Advanced Materials
  • Register
  • Login

Advanced Materials Proceedings

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 3, Issue 3
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Publication Ethics

Peer Review Process

News

Disclaimer

Diamond Open Access

Terms & Condition

Effect of silicon carbide nanoparticles on dielectric (2.45 GHz) and thermal properties of epoxy nanocomposites for microwave curing

    Ranu Pal Sandeep Kumar Singh M.J. Akhtar Kamal K. Kar

Advanced Materials Proceedings, 2018, Volume 3, Issue 3, Pages 170-174
10.5185/amp.2018/013

  • Show Article
  • References
  • Download
  • Cite
  • Statistics
  • Share

Abstract

Efforts to use microwaves in material processing are gradually increasing. However, the phenomenon associated with the processing is less understood. The conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, the fundamental knowledge of these properties is essential for processing of materials using microwaves. In this study, first the dielectric evolution of silicon carbide (SiC) infused epoxy nanocomposites prepared at room temperature with 0-0.3 wt% content of SiC was measured. Secondly, the dielectric properties of the prepared nanocomposites after heating for 10 min in microwaves at a power of 500 W were investigated in order to see the effect of microwave curing. The dielectric properties of all the samples were measured at the microwave frequency of 2.45 GHz using the advanced cavity perturbation method attached to a vector Network Analyzer (VNA). The results indicate that the dielectric properties of the resultant nanocomposites increase with the increase in SiC content as compared to the neat epoxy sample. However, the dielectric properties were found to be decrease after microwave curing signaling the maximum possible extent of curing. This indicates that reinforcement of SiC nanoparticles in epoxy makes them ideal candidates for efficient microwave curing of nanocomposites. Lastly, the determination of thermal properties also confirms the maximum possible extent of curing of epoxy using SiC as nanofillers. Copyright © 2018 VBRI Press. 
Keywords:
    dielectric properties Silicon carbide microwave curing Glass transition temperature
  • PDF (717 K)
  • XML
(2021). Effect of silicon carbide nanoparticles on dielectric (2.45 GHz) and thermal properties of epoxy nanocomposites for microwave curing. Advanced Materials Proceedings, 3(3), 170-174. doi: 10.5185/amp.2018/013
Ranu Pal; Sandeep Kumar Singh; M.J. Akhtar; Kamal K. Kar. "Effect of silicon carbide nanoparticles on dielectric (2.45 GHz) and thermal properties of epoxy nanocomposites for microwave curing". Advanced Materials Proceedings, 3, 3, 2021, 170-174. doi: 10.5185/amp.2018/013
(2021). 'Effect of silicon carbide nanoparticles on dielectric (2.45 GHz) and thermal properties of epoxy nanocomposites for microwave curing', Advanced Materials Proceedings, 3(3), pp. 170-174. doi: 10.5185/amp.2018/013
Effect of silicon carbide nanoparticles on dielectric (2.45 GHz) and thermal properties of epoxy nanocomposites for microwave curing. Advanced Materials Proceedings, 2021; 3(3): 170-174. doi: 10.5185/amp.2018/013
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver

(a) Scientific article
1.
Trihotri, M.K.;Dwivedi, U.; Khan, F.Z.H.;J. Non-cryst. solid.
2015,
421,1–13.
DOI: 10.1016/j.jnoncrysol.2015.04.020
2. Mishra, R.R.; Sharma A.K.; Composites Part A, 2016,81,78-97

DOI:
10.1016/j.compositesa.2015.10.035
3. Thostenson,
E.T.;Chou T.W., Microwave processing:
fundamentals and application
,CompositesPartA:Appl.Sci.
Manuf.,1999
, 30, 1055–1071.
DOI:
10.1016/S1359-835X(99)00020-2
4. Sgriccia, N.; Hawley, M.C.; Compos. Sci. Technol.,2007, 67,
1986-1991.

DOI:
10.1016/j.compscitech.2006.07.031
Sample
Microwave cured
IDT (oC)MDT (oC)
Neat epoxy

0.1 wt% SiC/epoxy

0.2 wt% SiC/epoxy

0.3wt% SiC/Epoxy

310

328

348

351

336

350

367

372

 
 

Research Article 2018, 3(3), 170-174Advanced Materials Proceedings


Copyright © 2018VBRI Press 174

5. Fotiou, I.; Baltopoulos,A.;Vavouliotis; Kostopoulos, V.;J. APPL
POLYM. SCI.,2013, 129, 2754-2764.

DOI:10.1002/app.39003
6.
Li, N.; Li Y.; Hang, X.; Gao, J.; Mater. Process.Technol. 2014,
214,
544-550.
DOI:
10.1016/j.jmatprotec.2013.10.012
7. Zheng Y.; Jiang Z.; Sun, Z.; Ren, H. Constr. Build. Mater.2014,
68 320-325.

DOI:
10.1016/j.conbuildmat.2014.07.014
8.
Luhyna, N.; Inam, F.; Winnington I.; Wrexham, North Wales, UK,
2013
.
9
Harper, J.;Price,D.; Zhang,J.;JMPEE, 2007, 40, 219.-227.
10.
Venkatesh, M.S.; Raghavan, G.S.V.; An Overview of Microwave
Processing and Dielectric Properties of Agri
-food Materials,
J.Biosystem
Eng.,2004, 88, 1–18.
11.Rabby, M.R.E.; Jeelani, S.; Rangari, V.K.;J. APPL POLYM. SCI.,
2015,132.

DOI:10.1002/app.41708
12.
Mohanty, S.; Nayak, S.K.; Kalia, S.; Wiley spScrivenger
publishing, June
2015.
13.Azizurrahaman, Jha, A.K.;Akhtar, M.J.; J. Adv. Powder.
Technol.,26,2015, 1281–1286.

DOI:
10.1016/j.apt.2015.06.011
14.
Pal, R., Jha, A. K.; Akhtar, M.J.; Kar, K. K.; Kumar, R.; Nayak,
D.;
J. Adv. Powder. Tecnol.2017.
15.Guo, H.; Zheng, J.; Jianqun, G.;RSC Adv.2015, 5, 88014-88020.

DOI:10.1039/C5RA16540G

  • Article View: 34
  • PDF Download: 10
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus