Effect of silicon carbide nanoparticles on dielectric (2.45 GHz) and thermal properties of epoxy nanocomposites for microwave curing
Advanced Materials Proceedings,
2018, Volume 3, Issue 3, Pages 170-174
10.5185/amp.2018/013
Abstract
Efforts to use microwaves in material processing are gradually increasing. However, the phenomenon associated with the processing is less understood. The conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, the fundamental knowledge of these properties is essential for processing of materials using microwaves. In this study, first the dielectric evolution of silicon carbide (SiC) infused epoxy nanocomposites prepared at room temperature with 0-0.3 wt% content of SiC was measured. Secondly, the dielectric properties of the prepared nanocomposites after heating for 10 min in microwaves at a power of 500 W were investigated in order to see the effect of microwave curing. The dielectric properties of all the samples were measured at the microwave frequency of 2.45 GHz using the advanced cavity perturbation method attached to a vector Network Analyzer (VNA). The results indicate that the dielectric properties of the resultant nanocomposites increase with the increase in SiC content as compared to the neat epoxy sample. However, the dielectric properties were found to be decrease after microwave curing signaling the maximum possible extent of curing. This indicates that reinforcement of SiC nanoparticles in epoxy makes them ideal candidates for efficient microwave curing of nanocomposites. Lastly, the determination of thermal properties also confirms the maximum possible extent of curing of epoxy using SiC as nanofillers. Copyright © 2018 VBRI Press.(a) Scientific article
1.Trihotri, M.K.;Dwivedi, U.; Khan, F.Z.H.;J. Non-cryst. solid.
2015, 421,1–13.
DOI: 10.1016/j.jnoncrysol.2015.04.020
2. Mishra, R.R.; Sharma A.K.; Composites Part A, 2016,81,78-97
DOI: 10.1016/j.compositesa.2015.10.035
3. Thostenson, E.T.;Chou T.W., Microwave processing:
fundamentals and application,CompositesPartA:Appl.Sci.
Manuf.,1999, 30, 1055–1071.
DOI:10.1016/S1359-835X(99)00020-2
4. Sgriccia, N.; Hawley, M.C.; Compos. Sci. Technol.,2007, 67,
1986-1991.
DOI:10.1016/j.compscitech.2006.07.031
SampleMicrowave cured
IDT (oC)MDT (oC)
Neat epoxy
0.1 wt% SiC/epoxy
0.2 wt% SiC/epoxy
0.3wt% SiC/Epoxy
310
328
348
351
336
350
367
372
Research Article 2018, 3(3), 170-174Advanced Materials Proceedings
Copyright © 2018VBRI Press 174
5. Fotiou, I.; Baltopoulos,A.;Vavouliotis; Kostopoulos, V.;J. APPL
POLYM. SCI.,2013, 129, 2754-2764.
DOI:10.1002/app.39003
6.Li, N.; Li Y.; Hang, X.; Gao, J.; Mater. Process.Technol. 2014,
214, 544-550.
DOI:10.1016/j.jmatprotec.2013.10.012
7. Zheng Y.; Jiang Z.; Sun, Z.; Ren, H. Constr. Build. Mater.2014,
68 320-325.
DOI:10.1016/j.conbuildmat.2014.07.014
8.Luhyna, N.; Inam, F.; Winnington I.; Wrexham, North Wales, UK,
2013.
9Harper, J.;Price,D.; Zhang,J.;JMPEE, 2007, 40, 219.-227.
10. Venkatesh, M.S.; Raghavan, G.S.V.; An Overview of Microwave
Processing and Dielectric Properties of Agri-food Materials,
J.Biosystem Eng.,2004, 88, 1–18.
11.Rabby, M.R.E.; Jeelani, S.; Rangari, V.K.;J. APPL POLYM. SCI.,
2015,132.
DOI:10.1002/app.41708
12.Mohanty, S.; Nayak, S.K.; Kalia, S.; Wiley spScrivenger
publishing, June 2015.
13.Azizurrahaman, Jha, A.K.;Akhtar, M.J.; J. Adv. Powder.
Technol.,26,2015, 1281–1286.
DOI:10.1016/j.apt.2015.06.011
14. Pal, R., Jha, A. K.; Akhtar, M.J.; Kar, K. K.; Kumar, R.; Nayak,
D.; J. Adv. Powder. Tecnol.2017.
15.Guo, H.; Zheng, J.; Jianqun, G.;RSC Adv.2015, 5, 88014-88020.
DOI:10.1039/C5RA16540G
- Article View: 34
- PDF Download: 10