Authors

1 Research scholar UTU Dehradun and Army Cadet College, Indian Military Academy, Dehradun, India

2 Advanced Tribology Research Centre, CSIR-Indian Institute of Petroleum, Dehradun, India

Abstract

Flow behavior of lubricants is largely determined by rheological properties that in turn influence their tribo-performance behavior. Rheological parameters can be influenced by dispersing MoS2 nano-particles in them. In order to study the effect of MoS2 nano-particles on tribological and rheological properties of lubricants, two commercially available blended lubricants were selected as base oils with synthetic engine oils of SAE grades 5W40. They were blended with 0.15 and 0.2% by weight of functionalized nano-MoS2. Standard ASTM and IS procedures were used to determine physicochemical properties and tribo-performance behavior of oils respectively. Rheometer Physica MCR 301 from Anton-Paar Austria was used to determine the rheological parameters of lubricants. A marginal reduction in friction to the tune of 3% has been observed for the 0.2 wt% of MoS2 nano-particles in the tested lubricants while anti-wear properties showed significant enhancement by 20% indicating better anti wear properties of nano-MoS2. Extreme pressure properties of MoS2 particles play an important role in defining its anti-wear properties as it has significant load bearing properties. Rheological data reveal that tested MoS2 nano-fluids show shear thinning behavior at all tested temperatures and rheological behavior improved with the addition of MoS2 nanoparticles due to increase in apparent yield stress. Copyright © 2018 VBRI Press.

Keywords

1.Li B.; Wang X.; Liu W.; Xue Q.; Tribol. Lett., 2006, 22, 79.
DOI:10.1007/s11249-005-9002-7

2.Choi, S.U.S. Development and applications of non-newtonian
flows; Siginer, D.A.; Wang, D.A. (Eds.); A.S.M.E.: New York,
USA, 1995, pp. 99-105.

3.Wang, X.Q.; Majumdar, A.S.; Braz. J. Chem. Eng., 2008, 25, 61.

DOI:10.1590/S0104-66322008000400001

4.Wang, X.Q.; Majumdar, A.S.; Braz. J. Chem. Eng., 2008, 25, 613.

DOI:10.1590/S0104-66322008000400002

5.Yu, W.; Xie, H.; J. Nanomater., 2012, article id 435873, 17pages.
DOI:10.1155/2012/435873

6.Mariano, A.; Gallego, M.J.P.;Lugo, L. Mussari, L. Pineiro, M.M.;
Int .J. Heat Mass Transfer 2015, 85, 54.

DOI:10.1016/j.ijheatmasstransfer.2015.01.061

7.
Maiga, S.E.B.; Nguyen, C.T.; Int. J. Numer. Methods Heat Fluid
Flow
, 2006, 16 175.
DOI:10.1108/09615530610649717

8.Bird, R.B.; Armstrong, R.C.; Hassager, O.; Dynamics of polymeric
liquids volume 1 Fluid Mechanics, second edition, Wiley:New
York, 1987.

9.Yapici, K.;Cakmak, N.K Ilhan N.; Uludag, Y.; Korea-Australia
Rheol. J., 2014,26, 355.

DOI:10.1007/s13367-014-0041-1

10.Jamal-Abad M. T.; Dehghan, M; Saedodin, S.; Valipour, M. S.;
Zamzamian, A.; J. Heat Mass Transfer Res., 2014, 1, 17.

DOI:10.22075/JHMTR.2014.150

11.Tarasov, S.; Kolubaev, A.;Belyaev, S.; Lerner, M.; Tepper, F.;
Wear 2002, 252, 63.

DOI:10.1016/S0043-1648(01)00860-2

12.Zhou, J.; Wu, Z.; Zhang, Z. Liu, W.; Xue, Q.; Tribol. Lett., 2000,
8, 213.

DOI:10.1023/A:1019151721801

13.YANG, G.B.; Chai, S.T.; Xiong, X.J.; Yu, L.G.; Zhang, P.Y.;
Trans. Nonferrous Met.Soc.China 2012, 22, 366

DOI:10.1016/S1003-6326(11)61185-0

14.Xiong, X.; Kang, Y.; Yang, G.; Zhang, S.; Yu, L.; Zhang, P.;
Tribol. Lett.2012,46, 211.

DOI:10.1007/s11249-012-9940-9

15.Thapliyal, P.; Kumar, A.; Thakre, G. D.; Singhal, S. K.; Jain, A.
K.; Adv. Sci. Lett.,2016, 22, 3726.

DOI:10.1166/asl.2016.8034

16.Xue, Q.; Liu, W. Zhang, Z.J.; Wear, 1997, 213, 29.

DOI:10.1016/S0043-1648(97)00200-7

17.Wu, Y.Y;. Tsui, W.C.; Liu, T.C.; Wear,2007,262, 819.

DOI:10.1016/j.wear.2006.08.021

18.
Peng, D.X.; Chen, C.H.; Ind. Lubr. Tribol., 2010, 62, 111.
DOI: 10.1108/00368791011025656

19.Dhanasekaran, S.; Gnanamoorthy, R.; J. Mater. Sci., 2007, 42,
4659.

DOI: 10.1007/s10853-006-0385-0

20.Wan, Q.; Jin, P.; Sun, Y.; J. Nanopart. Res., 2014, 16, 2386.
DOI:10.1007/s11051-014-2386-2