1 Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, Riga, LV 1063, Latvia.

2 Institute of Technical Physics, Faculty of Materials Science and Applied Chemistry, Riga Technical University,Paula Valdena Street 3/7, Riga, LV 1048, Latvia.

3 Keramserviss LTD, Tauriņi, Adazi, LV 2164, Latvia.

4 Centre for Hydrogen Energy Technologies, Lithuanian Energy Institute, Breslaujos g. 3, Kaunas, LT‑44403, Lithuania.


Hydrogen storage is one of the main problems, to catalyse wide hydrogen use in transportation, technology and energetics. Composites involving nanostructured carbon species could be the solution for hydrogen storage problem because of their promising surface/volume relation. Not only catalysis and gas sensing on graphene basis should be considered, but also metal decorated graphene structures for use in hydrogen storage should be an active field for research and development. Heat conductivity and large surface area of graphene-like materials can endorse research for hydrogen storage in low pressures and close to room temperature (RT) conditions - increasing possibility for RT-range devices in hydrogen energetics. For increased hydrogen storage investigations, we propose metal intercalated graphene structures, acquired during synthesis of graphene sheets. Intercalation, or decoration of graphene surfaces and edges have shown possibility to stabilize defects in graphene sheets. Graphene defects have shown to be sensitive against hydrogen gas and might as well prove themselves stable enough to achieve low pressure hydrogen storage. A simple method is proposed for synthesis of graphene sheet stacks (GSS). There is lack of research for synthesis of carbon nanomaterials from industrial graphite waste. Our research for stabilization of electrolyte solution and increased production amounts for hydrogen accepting samples continues. Copyright © 2018 VBRI Press.


1.Goede, A.;van de Sanden, R.; Europhys. News, 2016, 47, 22.

2.Hoffmann, P.; Tomorrow’s energy : hydrogen, fuel cells, and the
prospects for a cleaner planet; The MIT Press: USA, 2012.

3.EUROPEAN COMMISSION, A Roadmap for moving to a
competitive low carbon economy in 2050; 2011.

4.Parvez, K.; Wu, Z.-S.; Li, R.; Liu, X.; Graf, R.; Feng, X.;
Müllen,K.; J. Am. Chem. Soc., 2014,136, 6083.


5.Lesničenoks, P.; Zemītis, J.; Kleperis, J.; Čikvaidze, G.; Ignatāns,
R.; Rigas Teh. Univ. Zinat. Raksti, Ser. 1, 2015,31, 21.


6.Keramserviss LTD; Graphite Crucibles; 2016.


7.Chung, D.D.L.; J. Mater. Sci., 2016, 51554.

8.Hardwick, L.J.; Buqa, H.; Holzapfel, M.; Scheifele, W.; Krumeich,
F.; Novák, P.; Electrochim. Acta, 2007, 52, 4884.


9.Shearer, C.J.; Slattery, A.D.; Stapleton, A.J.; Shapter, J.G.; Gibson,
C.T.; Nanotechnology, 2016, 27, 125704.


10.Siokou, A.; Ravani, F.; Karakalos, S.; Frank, O.; Kalbac, M.;
Galiotis, C.; Appl. Surf. Sci., 2011, 257, 9785.


11.Jelenković, E.; To, S.; Blackford, M.; Kutsay, O.; Jha,S.; Mater.
Sci. Semicond. Process., 2015, 40, 817.


12.Moulder, J.F.; Chastain, J.; King, R.C.; Handbook of x-ray
photoelectron spectroscopy : a reference book of standard spectra
for identification and interpretation of XPS data, Physical
Electronics: USA, 1995.

13.Fang, X.-Y.; Yu, X.-X.; Zheng, H.-M.; Jin, H.-B.; Wang, L.; Cao,
M.-S.; Phys. Lett. A, 2015, 379, 2245.


14.Muchharla, B.; Narayanan, T.N.; Balakrishnan, K.; Ajayan, P.M.;
Talapatra, S.; 2D Mater., 2014, 1, 11008.


15.Punckt, C.; Muckel, F.; Wolff, S.; Aksay, I.A.; Chavarin, C.A.;
Bacher, G.; Mertin, W.; Appl. Phys. Lett.,2013, 102,023114.


16.Majchrzycki, L.; Augustyniak-Jablokow, M.A.; Strzelczyk, R.;
Ma¢kowiak, M.; Acta Phys. Pol., A, 2015, 127, 540.


17.Rao, S.S.; Stesmans, A.; Wang, Y.; Chen, Y.; Phys. E (Amsterdam,
Neth.), 2012, 44, 1036.


18.Amarande, L.; Miclea, C.; Cioangher, M.; Grecu, M.N.; Pasuk,I.;
J. Alloys Compd., 2016, 685, 159.