Authors

Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, Sonipat, Haryana, India

Abstract

The current study reports biogenic synthesis of silver nanoparticles from Elettaria cardamomum. Elettaria leaf extract was used as reducing and capping agent for nanoparticle synthesis from parent solution of silver nitrate. Nanoparticle suspension was characterized mainly using UV-Visible spectroscopy. Synthesis parameters namely, time, metal ion concentration, leaf extract quantity, reaction temperature and pH are well known to affect the final product of synthesis and hence, were varied to assess optimum conditions for synthesis. Nanoparticles synthesized at optimum conditions were washed and characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Nanoparticles obtained were in the size range of 5-80 nm (TEM), with an average particle size of 29.96 nm as calculated using Debye-Scherrer formula and average hydrodynamic diameter of 32.12 nm (DLS). FTIR implicates plausible role of protein part of leaf extract in nanoparticle synthesis and DLS confirms monodisperse nature of the suspension. Nanoparticle suspension was found to be stable after four months of storage at room temperature without the addition of any stabilizing agents. Silver nanoparticles exhibited excellent antifungal activity against various fungal phytopathogens with minimum inhibitory concentration as low as 8 µg/mL for Aspergillus niger, making them potential antifungal agents in the field of agriculture. Copyright © 2018 VBRI Press.

Keywords

1.Feynman, R.P. Eng. Sci. 1960, 23, 22.
2.Tiwari, A. Adv. Mater. Lett. 2012, 3, 1.

3.El-Nour, K.M.M.A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A.
Arabian J. Chem.2010, 3, 135.

4.Syed, M.A. Biosens. Bioelectron.2014, 51, 391.

5.Alex, S.; Tiwari, A. J. Nanosci. Nanotechnol. 2015, 15, 1869.

6.Chauhan, P.; Mishra, M.; Gupta, D. Potential Application of
Nanoparticles as Antipathogens, In Advanced Materials for
Agriculture, Food, and Environmental Safety; Tiwari, A.;
Syväjärvi, M. (Eds.); John Wiley & Sons: USA, 2014, pp. 333-
368.

7.Mishra, S.; Singh, H.B. Appl. Microbiol. Biotechnol.2015, 99,
1097.

8.Stark, W.J.; Stoessel, P.R.; Wohlleben,W.; Hafner, A. Chem. Soc.
Rev.2015, 44, 5793.

9.Jamdagni, P.; Khatri, P.; Rana, J.S. Int. Nano Lett. 2016, 6, 139.

10.Pacioni, N.L.; Borsarelli
, C.D.; Rey, V.; Veglia, A.V. Synthetic
Routes for the Preparation of Silver Nanoparticles, In Silver
Nanoparticle Applications; Alarcon, E.I.; Griffith, M.; Udekwu,
K.I. (Eds.); Springer: Heidelberg,2015, pp. 1346.

11.Sharma, T.K.; Chopra, A.; Sapra, M.; Kumawat, D.; Patil, S.D.;
Pathania, R.; Navani, N.K. Int. J. Green Nanotechnol. 2012, 4, 1.

12.Akhtar, M.S.; Panwar, J.; Yun, Y-S. ACS Sustainable Chem. Eng.
2013, 1, 591.

13.Jamdagni, P.; Khatri, P.; Rana, J.S. J. King Saud Univ., Sci. 2016.
http://dx.doi.org/10.1016/j.jksus.2016.10.002

14.Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. ChemBioEng Rev.
2016, 3, 55.

15.Singh, P.; Kim, Y-J.; Zhang, D.; Yang, D-C. Trends Biotechnol.
2016, 34, 588.

16.Shanker, U.; Jassal, V.; Rani, M.; Kaith, B.S.Int. J. Environ. Anal.
Chem. 2016, 96, 801.

17.Jo, Y.K.; Kim, B.H.; Jung G. Plant Dis. 2009, 93, 1037.

18.Zinjarde, S.S. Chron. Young Sci.2012, 3, 74.

19.Shahrokh, S.; Emtiazi, G. Eur. J. Biol. Sci. 2009,1, 28.

20.Rai, M.; Yadav, A.; Gade, A. Biotechnol. Adv. 2009, 27, 76.

21.Silveira, C.P.; Torres-Rodríguez, J.M.; Alvarado-Ramírez, E.;
Murciano-Gonzalo, F.; Dolande, M.; Panizo, M.; Reviakina, V. J.
Med. Microbiol. 2009, 58, 1607.

22.Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Int. J. Ind. Chem.
2013, 4, 29.

23.Henglein, A. Chem. Mater. 1998, 10, 444.

24.Edison, T.J.I.; Sethuraman, M.G. Process Biochemistry,2012, 47,
1351.

25.
GnanaJobitha, G.; Annadurai, G.; Kannan, C.Int. J. Pharma Sci.
Res.
2012, 3, 323.
26.Dhiman, J.; Kundu, V.; Kumar, S.; Kumar, R.; Chakarvarti, S.K.
Am. J. Mater. Sci. Technol. 2014, 3, 13.

27.Iravani, S.; Zolfaghari, B. BioMed. Res. Int. 2013, 2013, 639725.

28.Vanaja, M.; Rajeshkumar, S.; Paulkumar, K.; GnanaJobitha, G.;
Malarkodi, C.; Annadurai, G. Adv. Appl. Sci. Res. 2013, 4, 50.

29.Alqadi, M.K.; Noqtah, O.A.A.; Alzoubi, F.Y.; Alzouby, J.;
Aljarrah, K. Mater. Sci.-Pol. 2014, 32, 107.
30.Amaladhas, T.P.; Usha, M.; Naveen, S. Adv. Mater. Lett.2013, 4,
779.

31.Song, J.Y.; Kim, B.S. Bioprocess Biosyst. Eng. 2009, 32, 79.

32.
Dwivedi, A.D.; Gopal, K.Colloids Surf., A.2010, 369, 27
33.Rastogi, L.; Arunachalam, J. Mater. Chem. Phys. 2011, 129, 558.

34.Parida, U.K.; Biswal, S.K.; Bindhani, B.K.; Nayak, P.L. World
Appl. Sci. J. 2013, 28, 962.

35.Spectroscopy Tutorial. Department of Chemistry and
Biochemistry, University of Colorado, Boulder.

http://orgchem.colorado.edu/Spectroscopy/specttutor/irchart.html.
Accessed Dec 18, 2015.

36.Shankar, S. S.; Ahmad, A.; Sastry, M. Biotechnol. Prog. 2003, 19,
1627.

37.Theivasanthi,T.; Alagar, M. Nano Biomed. Eng. 2012, 4, 58.

38.Sondi, I.; Salopek-Sondi, B. J. Colloid Interface Sci. 2004, 275,
177.

39.Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. Int. J. Mol. Sci.
2013, 14, 16732.

40.Yun, H.; Kim, J.D.; Choi, H.C.; Lee, C.W. Bull. Korean Chem.
Soc. 2013, 34, 3261.

41.Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Appl.
Environ. Microbiol. 2003, 69, 4278.

42.Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler,
M. Appl. Environ. Microbiol. 2009, 75, 2973.

43.Feng,Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O.J.
Biomed.Mater.Res. 2000, 52, 662.

44.Lansdown, A.B.G. Journal of Wound Care. 2002, 11, 125.

45.Castellano, J.J.; Shafii, S.M.; Ko, F.; Donate, G.; Wright, T.E.;
Mannari, R.J.; Payne, W.G.; Smith, D.J.; Robson, M.C.
International Wound Journal. 2007, 4, 114.