Document Type : Research Article


Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India


In the present work, different synthesis methods i.e., sol-gel method, glycine-nitrate method and solid state route have been used to synthesize lanthanum strontium cobaltite (LSCO), which is utilized as cathode in low and intermediate temperature solid oxide fuel cell (SOFC). Calcination temperature for LSCO has been determined by TGA. XRD, SEM, EDX and TEM have been used to assess the phase purity, crystallite size, morphology, distribution of constituent elements and particle size of synthesized LSCO material. Two-probe AC conductivity method has been used to calculate the ionic conductivity of LSCO in air environment between 400-800°C. LSCO synthesized by sol-gel method provided highest ionic conductivity of 0.42 S/cm at 700°C and lowest activation energy of 31.60 kJ/mol between 500 to 700 °C among all the methods. LSCO synthesized by sol-gel method gives lowest area specific resistance (ASR) of 3.52 Ω cm2 at 800°C for half-cell (LSCO/YDC). High ionic conductivity and low polarization resistance established LSCO synthesized by sol-gel method, as the potential cathode material. Copyright © 2018 VBRI Press.


1.Sun, C.; Hui, R.; Roller, J.; J. Solid State Electrochem., 2010,14,


2.Liu, B.; Liu, G.; Feng, H.; Wang, C.; Yang, H.; Wang, Y.; Mater.
Des., 2016, 89, 715.


3.Fu, Y.; Subardi, A.; Hsieh, M.; Chang, W.; J. Am. Ceram. Soc.,
2016, 99, 1345.


4.Adler, S. B.; Chem. Rev., 2004, 104,4791.

DOI: 10.1021/cr020724o
5.Jiang, S. P.; J. Mater. Sci., 2008, 43,6799.

DOI: 10.1007/s10853-008-2966-6

6.Pelosato, R.; Cordaro, G.; Stucchi, D.; Cristiani, C.; Dotelli, G.; J.
Power Sources, 2015, 298, 46.

DOI: 10.1016/j.jpowsour.2015.08.034

7.Gomez, A. M.; Sacanell, J.; Leyva, A. G.; Lamas, D. G.; Ceram.
Int., 2016, 42, 3145.

DOI: 10.1016/j.ceramint.2015.10.104

8.Park, J. S.; Kim, Y. B.; Thin Solid Films, 2016, 599, 174.


9.Burye, T. E.; Nicholas, J. D.; J. Power Sources, 2015, 276, 54.

DOI: 10.1016/j.jpowsour.2014.11.082

10.Lopez, E. G.; Marci, G.; Puleo, F.; Parola, V. L.; Liotta, L. F.;
Appl. Catal., B, 2015, 178, 218.

DOI: 10.1016/j.apcatb.2014.09.014

11.Basu, S.; Recent Trends in Fuel Cell Science and Technology;
Springer: USA, 2007.

DOI: 10.1007/978-0-387-68815-2_3
12.Su, Q.; Gong, W.; Yoon, D.; Jacob, C.; Jia, Q.; Manthiram, A.;
Jacobson, A. J.; Wang, H.; J. Electrochem. Soc., 2014, 161, F398.

DOI: 10.1149/2.026404jes

13.Kima, E. H.; Jung, H. J.; An, K. S.; Park, J. Y.; Lee, J.; Hwang, D.;
Kim, J. Y., Leed, M. J.; Kwona,Y.; Hwang, J. H.; Ceram. Int.,
2014, 40, 7817.

DOI: 10.1016/j.ceramint.2013.12.125

14.Choudhury, P. R.; Parui, J.; Chiniwar, S.; Krupanidhi, S. B.; Solid
State Commun., 2015, 208, 15.

DOI: 10.1016/j.ssc.2015.02.011

15.Egger, A.; Bucher, E.; Yang, M.; Sitte, W.; Solid State Ionics,
2012, 225,55.

DOI: 10.1016/j.ssi.2012.02.050

16.Lee , S.; Hu, Y.; Surf. Coat. Technol., 2013, 231, 293.

DOI: 10.1016/j.surfcoat.2012.02.028

17.Hu, Y.; Bouffanais, Y.; Almar, L.; Morata, A.; Tarancon, A.;
Dezanneau, G.; Int. J. Hydrogen Energy, 2013, 38,3064.

DOI: 10.1016/j.ijhydene.2012.12.047
18.Ou, D. R.; Cheng, M.; J. Power Sources, 2014, 272, 513.

DOI: 10.1016/j.jpowsour.2014.08.077

19.Endo, A.; Wada, S.; Wen, C.; Komlyama, H.; Yamada, K.; J.
Electrochem. Soc., 1998, 145,L35.

DOI: 10.1149/1.1838332
20.Endo, A.; Fukunaga, H.; Wen, C.; Yamada, K.; Solid State Ionics,
2000, 135,353.

DOI: 10.1016/S0167-2738(00)00466-5
21.Samat, A. A.; Ishak, M. A. M.; Hamid, H. A.; Osman, N., Adv.
Mater. Res.,2013, 701,131.

DOI: 10.4028/

22.Tao, Y.; Shao, J.; Wang, J.; Wang, W. G.; J. Power Sources, 2008,

DOI: 10.1016/j.jpowsour.2008.09.021

23.Lal, B.; Raghunandan, M. K.; Gupta, M.; Singh, R. N.; Int. J.
Hydrogen Energy, 2005, 30,723.


24.Ullmann, H.; Trofimenko, N.; Tietz, F.; Stover, D.; Ahmad-
Khanlou, A.; Solid State Ionics, 2000