Authors

Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

Abstract

This work demonstrates the achievement of high thermopower in the pellets of calcium cobalt oxide (Ca3Co4O9) co-doped with aluminium (Al) and titanium (Ti). The pellets of Ca(3-x)AlxCo(4-y)TiyO9+δ with x, y = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5, oxide ceramics are prepared using a hot-press machine by applying an uniaxial pressure of 70 MPa at a dwell temperature of
850 ºC. Microstructure imaging reveals compactness of good connectivity among grains with the estimated density using Archimedes principle suggests the formation of near perfect (99%) relative density for the new pelleted ceramics. All the
co-doped samples exhibit lower electrical resistivity (r) values compared to pure Ca3Co4O9. The maximum Seebeck coefficient (S) of 177 μV/K at 750 K is achieved for the pure Ca3Co4O9 sample. A significant improvement of 18% in the power factor (S2/r) is realized at 750 K in the co-doped samples containing 0.2 mol% of Al and Ti co-doping. The demonstration of significant thermoelectric properties of Ca(3-x)AlxCo(4-y)TiyO9+δ suggest that these materials could be utilized as promising active material in thermoelectrics. Copyright © 2018 VBRI Press.
 

Keywords

1.Jiang, J.;Chen, L.D.;Bai, S.Q.;Scripta Mater,2005,52,347.
DOI:10.1016/j.scriptamat.2004.10.038

2.
Terasaki;Sasago, Y.;Uchinokura, K.;Phys. Rev.B, 1997,56,
R12685
12687.
DOI:
10.1103/PhysRevB.56.R12685
3.Masset, A.C. ;Michel, C.;Maignan, A.;Hervieu,M.;Toulemende,
O.;Studer, S.;Phys. Rev. B2000,62,166-175.
DOI:10.1103/PhysRevB.62.166

4.Thermoelectric Handbook: Macro to Nano; edited by D.M.Rowe
(CRC), 2005.
ISBN-13:978-0849322648

5.Gupta, R.K.;Sharma, R.;Mahapatro, A.K.;Tandon,R.P.;
Physica B, 2016, 483, 48-53.

DOI:10.1016/j.physb.2015.12.028
6.Constantinescua, G.;Rasekhb, S.;Torresb, M.A.;Bosquec, P.;
Madreb,
M. A.;Sotelob, A.;Diezb,J. C.; Ceramics International
2013
,39, 6051-6056.
DOI:10.1016/j.ceramint.2013.01.021

7.Shikano,M.;Funachashi, R.; Appl. Phys. Lett, 2003, 82, 1851.

DOI:10.1063/1.1562337

8.
Song , X.; Chen,Y;Chen, S; Barbero, E; Thomas , E.L.;Barnes,
P.;
Solid State Communication, 2012, 152, 1509-1512.
DOI:10.1016/j.ssc.2012.06.014

9.Prevel, M.;Perez, O.;Noudem, J.G.;Solid State Science, 2007, 9,
231.

DOI:10.1016/j.solidstatesciences.2007.01.003

10.Fergus J.W.; Journal of the European Ceramic Society, 2012,32,
525-540.

DOI:10.1016/j.jeurceramsoc.2011.10.007

11.Ning Y.,W.; Nong, V.; Pryds, N.; Linderoth S.,
Journal of Alloys
and Compounds
, 2015, 638,127132.
DOI:
10.1016/j.jallcom.2015.02.185
12.Liu, H.Q.;Zhao, X.B.;Zhu, T.J.;Song, Y.;Wang, F.P.;Current
Applied Physics, 2009, 9, 409413.

DOI:10.1016/j.cap.2008.03.010

13.Creon, N.;Perez, O.;Hadermann, J.;Chem. Mater. 2006,18,5355.

DOI:10.1021/cm061163aCCC

14.Zhang, F.P. ;Lu, Q.M.;Zhang,
J.X.; PhysicaB Condensed
Matter,2009, 404(16),2142-2145.

DOI:10.1016/j.physb.2009.04.002

15.Semidubsky, D.;Jakes, V.;Jankovsky, O.;Leitner, J.;Sofer, Z.;
Hejtmanek, J.;J.solid state chem, 2012, 194, 199-205.

DOI:10.1016/j.jssc.2012.05.014

16.Delorme, F.;Martin, C.F.;Marudhachalam, P.;Guzman,
G.;Ovono, D.O.;Fraboulet, O.;Mater. Res. Bull,2012,47,
3287-3291.

DOI:
10.1016/j.materresbull.2012.07.037