Document Type : Research Article

Authors

Material Development Group, Defence Laboratory, Jodhpur 342011, India

Abstract

In the ongoing search for newer materials for microwave absorption applications, the graphene merits a special consideration owing to its outstanding mechanical, thermal and electrical properties. Here, we report investigation on microwave absorption properties of Fe-Co oxide- thermally exfoliated graphene oxide (Fe-Co oxide-TEGO) composite in a frequency range of 8-18 GHz. Fe-Co oxide was synthesized by thermal decomposition of Fe-Co oxide/aniline- formaldehyde copolymer at 900 0C in air.  Fe-Co oxide-TEGO hybrid was prepared by physical mixing of Fe-Co oxide and TEGO. Thereafter, hybrid was characterized using scanning electron microscope, energy dispersive X-ray, Fourier transform infrared spectrometer and X-ray diffractrometer. Thereafter, Fe-Co oxide-TEGO composites were prepared by intermixing in different weight % in PU (polyurethane) resin and their electromagnetic and microwave absorption properties were studied. The effect of varying the weight % of Fe-Co oxide in Fe-Co oxide-TEGO composite on electromagnetic properties was also studied. The absorption bandwidth of 3.5 GHz (8.5-12.0 GHz, X-band) and 5.0 GHz (13.0-18.0 GHz, Ku -band) has been achieved using Fe-Co oxide-TEGO composite (50 wt%) with 2.2 and 1.6 mm thickness, respectively. Microwave absorption studies show Fe-Co oxide- TEGO composite as a potential candidate for microwave absorption applications. Copyright© 2018 VBRI Press.

Keywords

1.Li, X.; Feng, J.; Du, Y.;Bai, J.; Fan, H.;, Zhang, H.; Peng, Y.;
Lib, F.;
J. Mater. Chem.A, 2015, 3, 5535.
DOI:10.1039/c4ta05718j

2.Xia, T.; Zhang, C.; Oyler, A N.; Chen, B X.; Adv Mater, 2013, 25,
6905.

DOI:10.1002/adma.201303088

3.Liu, W.J.; Che, C. R.; Chen, J. H.; Zhang, F.; Xia, F.; Wu, S. Q.;
Wang, M.; Small, 2012, 8, 1214.

DOI:10.1002/smll.201102245

4.
Chen, Z.D.; Wang, S.G.; He, S.; Liu, J.; Guo, L.; Cao, S. M.; J.
Mater. Chem.,
2013,A1,5996.
DOI:10.1039/C3TA10664K
5.Song, W. L.; Cao,M. S.; Fan, L. Z.; Lu, M. M.; Li, Y.; Wang, C.
Y.; Ju, H. F.;Carbon, 2014,77,130.

DOI:10.1016/j.carbon.2014.05.014
6.Singh, K.; Ohlan, A.; Pham, H.V.; Balasubramaniyan, R.;
Varshney, S.; Jang, J.; Hur, H. S.; Choi, M.W.; Kumar, M.;
Dhawan, K.S.; Kong, S.B.; Chung, S.J.;Nanoscale, 2013, 5, 2411.

DOI:10.1039/C3NR33962A
7.Che, C.R.; Peng, M.L.; Duan, F. X.; Chen, Q.; Liang, L.X.;Adv.
Mater.,2004, 16, 401.

DOI:10.1002/adma.200306460
8.
Guan, F.P.; Zhang, F.X.; Guo, J.; J.Appl. Phys. Lett. 2012, 101,
153108.

DOI:10.1063/1.4758931
9.
Li, B.Z.; Deng, D.Y.; Shen, B.; Hu, B.W.; Mater. Sci. Eng. B,
2009
,164, 112.
DOI :10.1016/j.mseb.2009.08.004

10.
Kong, J.; Liu, R.J.; Wang, L.F.; Luan, Q.L.; Itoh, M.; Machida, K.;
Appl. Phys. A
,2011, 105, 351.
DOI :10.1007/s00339-011-6593-8
11.He, Z.C.; Qiu, S.; Wang, Z. X.; Liu, R. J.; Luan, Q. L.; Liu,
W.; J Mater Chem,2012, 22,22160.

DOI: 10.1039/C2JM33068G

12.Kong, J.; Wang, L.F.; Wan, Z.X.; Liu, R.J.; Itoh, M.; Machida,
K., Mater. Lett., 2012, 78, 69.

DOI:10.1016/j.matlet.2012.03.026
13.
Wang, L.F.; Liu, R.J.; Kong, J.; Zhang, J.Z.; Wang, Z.X.; Itoh, M.;
Machida, K.;
J. Mater.Chem.,2011, 21, 4314.
DOI:10.1039/C0JM02894K
14.Sachdev
, V.K.; Sharma, S.K.; Bhattacharya, S.; Patel, K.;Mehra,
N.C.;
Gupta, V.;Tandon, R.P.;Adv. Mat. Lett.,2015, 6, 965.
DOI:10.5185/amlett.2015.5935
15.Yan, S.; Wang, L.; Wang, T.; Zhang, L.; Li,Y.; Dai, S.; Appl.
Phys. A, 2016,122, 235.

DOI:10.1007/s00339-016-9769-4

16.Wang, L.; Jia, X.; Li, Y.; Yang, F; L. Zhang, Liu, L.; Ren, X.;
Yang, H.; J. Mater. Chem.,A2, 201414940.

DOI:10.1039/C4TA02815E
17.
Qing, Y.C.; Zhou, W.C.; Luo, F.; Zhu, D.M.; Carbon, 2010, 48,
4074.

DOI:10.1016/j.carbon.2010.07.014
18.Kumar, N.;Kumar, R.; Nanotechnology and Nanomaterialsin the
Treatment of Life-threatening Diseases; Elsevier: Netherland,
2013
.
19.Wang, T.; Li, Y.; Wang, L.; Liu, C.; Geng, S.; Jia, X.; Yang, F.;
Zhang, L.; Liu, L.; You, B.; Ren, X.; Yang, H.; RSC Adv., 2015,
5,60114.

DOI: 10.1039/C5RA09715K

20.
Wang, Z.G; Gao, Z.; Tang, W.S.; Chen, Q.C.; Duan, F.F.; Zhao,
C.S.; Lin, W.S.; Feng, H.Y.; Zhou, L.; Qin, Y.;
ACS Nano,2012,
6
,11009.
DOI:10.1021/nn304630h
21.
Saini, P.; Choudhary, V.; Singh, P.B.; Mathur, B.R.; Dhawan,
K.S.;
Synth. Met., 2011, 6,1522.
DOI: 10.1016/j.synthmet.2011.04.033

22.Saini, P.; Arora, M.; Gupta, G.; Gupta, K. B.; Singh, N.V.;
Choudhary, V.; Nanoscale,2013,5,4330.

DOI: 10. 1039/c3nr00634d

23.Tiwari, A.;Adv. Mat. Lett.,2012, 3, 172

DOI:10.5185/amlett.2012.2002

24.Chaturvedi, A.; Tiwari, A.; Tiwari, A.;Adv. Mat. Lett.,2013, 4,
656.

DOI:10.5185/amlett.2013.4469

25.Russo, P.; Hu, A.; Compagnini, G.; Nano-Micro Lett.,2013, 5,
260.

DOI: 10.5101/nml.v5i4

26.Wang, C.; Han, X. J.; Xu, P.; Zhang, X.L.; Du, Y.C.; Hu, S.R.;
Appl. Phys.
Lett.,2011, 98,072906.
DOI : 10.1063/1.3555436

27.Pan, H.G.; Zhu, J.; Ma, L.S.; Sun, B. G.; Yang, J.Y.; Appl. Mater.
Interfaces,2013,5, 12716.

DOI:10.1021/am404117v
28.Zhao, C. X.; Zhang, M. Z.; Wang, Y. L.; Xi, K.; Cao, Q. Q.;
Wang, H. D.; Yang, Y.; Du, W.Y.; Sci. Rep.,2013, 3, 3421.

DOI: 10.1038/srep03421

29.Sun, X.; He, P. J.; Li, X. G.; Tang, J.; Wang, T.; Guo, X.Y.; Xue,
R. H.;
J. Mater. Chem.,2013, C1,765.
DOI:10.1039/C2TC00159D
30.Zhu, T. Z.; Sunx X.; Xue, R. H.; Guo, H.; Fan, L. X.; Pan, C. X.;
He, P. J.; J. Mater. Chem.,2014, C2, 6582.

DOI :10.1039/C4TC00757C

31
.Zhang, H.;Xie,A.;Wang,C.;Wang, H.;Shen, Y.;Tian, X.; J.
Mater. Chem.,
2013, A1, 8547.
DOI:10.1039/C3TA11278K

32.Kong, L.;
Yi, X.; Zhang, Y.; Yuan, X.; Fang, Y.; Cheng, L.;
Zhang, L.;
J. Phys. Chem. C, 2013, 117, 19701.
DOI:10.1021/jp4058498
33.Wang, T. et al.;J. Appl. Phys.,2013, 113,024314.

DOI: 10.1063/1.4774243
34.
Gupta, V.; Patra, M. K.; Shukla, A.; Saini, L.; Songara, S.; Jani, R.
K.; Vadera, S. R.;
Kumar, N.; Sci. Adv. Mater., 2014, 6, 1.
DOI:10.1166/sam.2014.1889

35.Hummers, S.W.; Offeman, E.R.
;J. Am. Chem. Soc., 1958, 80,
1339.

DOI: 10.1021/ja01539a017
36.Tong, C; Advanced Materials and Design for Electromagnetic
Interference Shielding; Taylor & Francis:UK,2009
.
DOI:10.1201/9781420073591.ch1
37.Savi, P.; Trinchero, D.; Tascone, R.; Orta, R.;IEEE Trans. on
Microwave Theory and Techniques
, 1997,45, 221.
DOI: 10.1109/22.557603
38.Zhang, Li.; Xinxin, Y.; Hongrui, H.; Yang, L.; Mingzai, W.;
Zhongzhu, W.; Guang, L.; Zhaoqi, S.; Changle, C.; Sci. Rep., 5,
9298.

DOI: 10.1038/srep09298

39.Singh, V. K.; Shukla, A.; Patra, M. K.; Saini, L.; Jani, R.K.;
Vadera, S. R.; Kumar, N.;Carbon, 2012,50, 2202.

DOI:10.1016/j.carbon.2012.01.033
40.Singh, V. K.; Patra, M. K.; Manoth, M.; Gowd, G. S., Vadera, S.
R.; Kumar, N. New Carbon Mater.;2009, 24, 147.

DOI:10.1016/S1872-5805(08)60044-X
41.Wang, C.; Han, X.; Xu, P.; Zhang, X.; Du, Y.; Hu, S.; Wang, J.;
Wang, X.; Appl. Phys. Lett.
;2011,98, 072906.
DOI:10.1063/1.3555436
42.Chen,Z. D.; Wang, S. G.; He, S.; Liu, J.; Guo, L.; Cao, S. M. J.;
Mater. Chem. A.,2013,1,5996.

DOI:10.1039/C3TA10664K
43.Liu, B. P.; Huang, Y.; Wang, L.; Zong, M.; Zhang, W; Mater.
Lett.,2013, 107,166.

DOI:10.1016/j.matlet.2013.05.136
44.Qin, F.; Brosseau, C.;J. Appl. Phys.
,2012,111, 061301.
DOI: 10.1063/1.3688435
45.Singh, P. A.; Garg, P.; Alam, F.; Singh, K.; Mathur, B.R.; Tandon,
P. R.; Chandra, A.; Dhawan, K.S.;Carbon, 2012,50, 3868.

DOI: 10.1016/j.carbon.2012.04.030