Document Type : Research Article
Authors
Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, 600025, TamilNadu, India
Abstract
Graphene functionalized with Poly(amidoamine) dendrimer stabilized PdNPs (r-GO-PAMAM-Pd) composite was prepared through facile experimental routes and characterized by FT-IR, XRD, Raman, SEM and EDAX techniques. Initially, poly(amidoamine) generation 3 (PAMAM (G3)) dendrimer was functionalized on graphene oxide (GO) and the resulting matrix was loaded with PdNPs through stabilization and thus produced excellent conducting composite material. The electro-catalytic activity of this composite was inspected by coating on bare GCE and thus produced stable and efficient GC-r-GO-PAMAM (G3)-Pd electrode and this in turn demonstrated for the oxidation of formic acid (FA). The occurrence of the oxidation reaction was monitored by cyclic voltammetric (CV) and linear sweep voltammetric (LSV) techniques in 0.5 M H2SO4 medium at the potential window of -0.3 to 1.0 V vs. Ag/AgCl, v = 50 mVs-1. The observed peak potential for the new electrode was located at 0.15V and compared with existing electrodes derived from different GO/Pd composites.
The comparative results reveals that the newly designed electrode shown an excellent catalytic activity, more resistant to the surface poisoning and the anodic onset potential was more negative than the reported electrodes. This improved electro-catalytic performance are due to the contribution of synergetic effect of GO, dendrimer and PdNPs. Copyright © 2018 VBRI Press.
Keywords
DOI:10.1021/cr020730k
2.Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater., 2011, 23,
1695-1715.
DOI:10.1002/adma.201003587
3.Yu, X.; Pickup, P. J. Power Sources., 2008, 182, 124-132.
DOI:10.1016/j.jpowsour.2008.03.075
4.Uhm, S.; Lee, H. J.; Kwon, Y.; Lee, J. Angew. Chem., Int. Ed., 2008, 47,
10163-10166.
DOI:10.1039/c1cc11235j
5.Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. J. Am. Chem.
Soc.,2008, 130, 5406-5407.
DOI:10.1021/ja800656y
6.Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Angew. Chem., Int. Ed.,
2010, 49, 2211-2214.
DOI:10.1002/anie.200906987
7.Antolini, E.; Energy Environ. Sci., 2009, 2, 915-931.
DOI:10.1039/B820837A
8.Lu, L.; Li, H.; Hong, Y.; Luo, Y.; Tang, Y. ; Lu, T.; J. Power
Sources., 2012, 210, 154-157.
DOI:10.1016/j.jpowsour.2012.03.010
9.Cheng, N.;Lv, H.; Wang, W.; Mu, S.; Pan, M.; Marken, F.; J.
Power Sources., 2010,195,7246-7249.
DOI:10.1016/j.jpowsour.2010.05.039
10.Mazumder, V.; Sun, S. J. Am. Chem. Soc., 2009, 131, 4588-4589.
DOI:10.1021/ja9004915
11.Jiujun, Z.(Eds.);PEM Fuel Cell Electrocatalysts and Catalyst
Layers:Fundamentals and Applications; Springer Science &
Business Media, 2008.
DOI:978-1-84800-936-3
12.Wang, L.; Nemoto, Y.; Yamauchi, Y.; J. Am. Chem. Soc.,
2011,133, 9674-9677.
DOI:10.1021/ja202655j
13.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;
Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A.;A.
Science., 2004, 306,666−669.
DOI:10.1126/science.1102896
14.Venkateswara Rao, C.; Cabrera, C.R.; Ishikawa, Y.;J. Phys. Chem.
C., 2011,115, 21963-21970.
DOI:10.1021/jp202561n
15.Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A.;
Angew. Chem. Int. Ed., 2009, 48, 7752-7777.
DOI:10.1002/anie.200901678
16.Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.;
AbouZeid,K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-
Azhary, A. A.; J.Mater. Chem., 2009, 19, 3832-3837.
DOI:10.1039/B906253J
17.Muszynski, R.; Seger, B.; Kamat, P. V.;J. Phys.Chem. C.,
2008,112, 5263-5266.
DOI:10.1021/jp800977b
18.Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.;Wang,
X. R.;J. Am. Chem. Soc., 2011, 133, 3693-3695.
DOI:10.1021/ja110313d
19.Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang,
F.;NanoRes., 2010, 3, 429-437.
DOI:10.1007/s12274-010-0002-z
20.Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang,
X. R.; J. Am. Chem. Soc., 2011, 133, 3693-3695.
DOI:10.1021/ja110313d
21.Pileni, M. P.; Nat. Mater., 2003, 2, 145-150.
DOI:10.1038/nmat817
22.Fu, B. S.; Missaghi, M. N.; Downing, C. M.; Kung, M. C.; Kung,
H. H.; Xiao, G. M.;Chem. Mater., 2010, 22, 2181-2183.
DOI:10.1021/cm100159j
23.Newkome, G.R.; Shreiner, C.D.;Polymer., 2008,49, 1-173.
DOI:10.1016/j.polymer.2007.10.021
24.Murugan, E.;Vimala, G.; J. Colloid Interface Sci., 2011, 357(2),
354-365.
DOI:10.1016/j.jcis.2011.02.009
25.Paulchamy, B.;,Arthi, G.; Lignesh, BD.; J Nanomed
Nanotechnol., 20156, 253.
DOI:10.4172/2157-7439.1000253
26.Murugan, E.; Sivaranjani, A.; RSC Adv., 2014, 4, 35428-35441.
DOI:10.1039/C4RA04646C
27.Zhou, Y.; Zhu, X.; Yang, X.; Jiang.; New Journal of Chemistry.,
2011, 35(2), 353-359.
DOI:10.1039/c0nj00623h
28.Zhang, Y.; Pan, C.; Journal of Materials Science., 2011, 46(8),
2622-2626.
DOI:10.1007/s10853-010-5116-x
4(8), 4806-4814.
DOI:10.1021/nn1006368
30.Piao, Y.; Small., 2007, 3, 255-260.
DOI:10.1002/smll.200600402
31.Li, C.; Angew. Chem. Int. Ed., 2009, 48, 6883-6887.
DOI:10.1002/ange.200902786
32.Ferrari, A. C.; Robertson, J.; Phys. Rev. B., 2000, 61, 14095-
14107.
DOI:0163-1829/2000/61~20!/14095~13
33.Tuinstra, F.; Koenig, J. L.; J. Chem. Phys., 1970, 53, 1126-1130.
DOI:10.1063/1.1674108
34.Qu, K.; Wu, L.; Ren, J.; Qu, X.; ACS Appl. Mater. Interfaces.,
2012, 4, 5001-5009.
DOI:10.1021/am301376m
35.Hosseini, H.;Mahyari, M.;Bagheri, A.;Shaabani, A.; Journal of
Power Sources., 2014, 247, 70-77.
DOI:10.1016/j.jpowsour.2013.08.061
36.Chen, X.; Wu, G.; Chen, J.; Chen, X.; Xie, Z.; Wang, X.; J. Am.
Chem. Soc., 2011, 133, 3693–3695.
DOI:10.1021/ja110313d
37.Batchelor-McAuley, C.; Luı ́s, A.; Goncalves, M.; Xiong, L.;
Barrosb, AA.; Compton, RG.; Chem. Commun.,2010, 46, 9037–
9039.
DOI:10.1039/C0CC03961F