Document Type : Research Article

Authors

Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, 600025, TamilNadu, India

Abstract

Graphene functionalized with Poly(amidoamine) dendrimer stabilized PdNPs (r-GO-PAMAM-Pd) composite was prepared through facile experimental routes and characterized by FT-IR, XRD, Raman, SEM and EDAX techniques. Initially, poly(amidoamine) generation 3 (PAMAM (G3)) dendrimer was functionalized on graphene oxide (GO) and the resulting matrix was loaded with PdNPs through stabilization and thus produced excellent conducting composite material. The electro-catalytic activity of this composite was inspected by coating on bare GCE and thus produced stable and efficient GC-r-GO-PAMAM (G3)-Pd electrode and this in turn demonstrated for the oxidation of formic acid (FA). The occurrence of the oxidation reaction was monitored by cyclic voltammetric (CV) and linear sweep voltammetric (LSV) techniques in 0.5 M H2SO4 medium at the potential window of -0.3 to 1.0 V vs. Ag/AgCl, v = 50 mVs-1. The observed peak potential for the new electrode was located at 0.15V and compared with existing electrodes derived from different GO/Pd composites.
The comparative results reveals that the newly designed electrode shown an excellent catalytic activity, more resistant to the surface poisoning and the anodic onset potential was more negative than the reported electrodes. This improved electro-catalytic performance are due to the contribution of synergetic effect of GO, dendrimer and PdNPs.  Copyright © 2018 VBRI Press.
 

Keywords

1.Winter, M.; Brodd, R.; J. Chem. Rev., 2004, 104, 4245-4269.
DOI:10.1021/cr020730k

2.Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater., 2011, 23,
1695-1715.

DOI:10.1002/adma.201003587

3.Yu, X.; Pickup, P. J. Power Sources., 2008, 182, 124-132.

DOI:10.1016/j.jpowsour.2008.03.075
4.Uhm, S.; Lee, H. J.; Kwon, Y.; Lee, J. Angew. Chem., Int. Ed., 2008, 47,
10163-10166.

DOI:10.1039/c1cc11235j

5.Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. J. Am. Chem.
Soc.,2008, 130, 5406-5407.

DOI:10.1021/ja800656y

6.Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Angew. Chem., Int. Ed.,
2010, 49, 2211-2214.

DOI:10.1002/anie.200906987

7.Antolini, E.; Energy Environ. Sci., 2009, 2, 915-931.

DOI:
10.1039/B820837A
8.Lu, L.; Li, H.; Hong, Y.; Luo, Y.; Tang, Y. ; Lu, T.; J. Power
Sources., 2012, 210, 154-157.

DOI:10.1016/j.jpowsour.2012.03.010
9.Cheng, N.;Lv, H.; Wang, W.; Mu, S.; Pan, M.; Marken, F.; J.
Power Sources., 2010,195,7246-7249.

DOI:10.1016/j.jpowsour.2010.05.039
10.Mazumder, V.; Sun, S. J. Am. Chem. Soc., 2009, 131, 4588-4589.

DOI:10.1021/ja9004915

11.Jiujun, Z.(Eds.);PEM Fuel Cell Electrocatalysts and Catalyst
Layers:Fundamentals and Applications; Springer Science &
Business Media, 2008.

DOI:978-1-84800-936-3
12.Wang, L.; Nemoto, Y.; Yamauchi, Y.; J. Am. Chem. Soc.,
2011,133, 9674-9677.

DOI:10.1021/ja202655j

13.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;
Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A.;A.
Science., 2004, 306,666669.

DOI:10.1126/science.1102896

14.Venkateswara Rao, C.; Cabrera, C.R.; Ishikawa, Y.;J. Phys. Chem.
C., 2011,115, 21963-21970.

DOI:10.1021/jp202561n

15.Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A.;
Angew. Chem. Int. Ed., 2009, 48, 7752-7777.

DOI:10.1002/anie.200901678

16.Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.;
AbouZeid,K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-
Azhary, A. A.; J.Mater. Chem., 2009, 19, 3832-3837.

DOI:
10.1039/B906253J
17.Muszynski, R.; Seger, B.; Kamat, P. V.;J. Phys.Chem. C.,
2008,112, 5263-5266.

DOI:10.1021/jp800977b

18.Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.;Wang,
X. R.;J. Am. Chem. Soc., 2011, 133, 3693-3695.

DOI:10.1021/ja110313d

19.Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang,
F.;NanoRes., 2010, 3, 429-437.

DOI:
10.1007/s12274-010-0002-z
20.Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang,
X. R.; J. Am. Chem. Soc., 2011, 133, 3693-3695.

DOI:10.1021/ja110313d

21.Pileni, M. P.; Nat. Mater., 2003, 2, 145-150.

DOI:10.1038/nmat817

22.Fu, B. S.; Missaghi, M. N.; Downing, C. M.; Kung, M. C.; Kung,
H. H.; Xiao, G. M.;Chem. Mater., 2010, 22, 2181-2183.

DOI:10.1021/cm100159j

23.Newkome, G.R.; Shreiner, C.D.;Polymer., 2008,49, 1-173.

DOI:10.1016/j.polymer.2007.10.021
24.Murugan, E.;Vimala, G.; J. Colloid Interface Sci., 2011, 357(2),
354-365.

DOI:10.1016/j.jcis.2011.02.009
25.Paulchamy, B.;,Arthi, G.; Lignesh, BD.; J Nanomed
Nanotechnol., 20156, 253.

DOI:10.4172/2157-7439.1000253

26.Murugan, E.; Sivaranjani, A.; RSC Adv., 2014, 4, 35428-35441.

DOI:10.1039/C4RA04646C

27.Zhou, Y.; Zhu, X.; Yang, X.; Jiang.; New Journal of Chemistry.,
2011, 35(2), 353-359.

DOI:10.1039/c0nj00623h

28.Zhang, Y.; Pan, C.; Journal of Materials Science., 2011, 46(8),
2622-2626.

DOI:10.1007/s10853-010-5116-x
29.Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; ACS Nano., 2010,
4(8), 4806-4814.

DOI:10.1021/nn1006368

30.Piao, Y.; Small., 2007, 3, 255-260.

DOI:10.1002/smll.200600402

31.Li, C.; Angew. Chem. Int. Ed., 2009, 48, 6883-6887.

DOI:10.1002/ange.200902786

32.Ferrari, A. C.; Robertson, J.; Phys. Rev. B., 2000, 61, 14095-
14107.

DOI:0163-1829/2000/61~20!/14095~13

33.Tuinstra, F.; Koenig, J. L.; J. Chem. Phys., 1970, 53, 1126-1130.

DOI:10.1063/1.1674108
34.Qu, K.; Wu, L.; Ren, J.; Qu, X.; ACS Appl. Mater. Interfaces.,
2012, 4, 5001-5009.

DOI:10.1021/am301376m

35.Hosseini, H.;Mahyari, M.;Bagheri, A.;Shaabani, A.; Journal of
Power Sources., 2014, 247, 70-77.

DOI:10.1016/j.jpowsour.2013.08.061
36.Chen, X.; Wu, G.; Chen, J.; Chen, X.; Xie, Z.; Wang, X.; J. Am.
Chem. Soc., 2011, 133, 36933695.

DOI:10.1021/ja110313d

37.Batchelor-McAuley, C.; Luı ́s, A.; Goncalves, M.; Xiong, L.;
Barrosb, AA.; Compton, RG.; Chem. Commun.,2010, 46, 9037
9039.

DOI:10.1039/C0CC03961F