Document Type : Research Article
Authors
Faculty of Physics, Belarusian State University, 4 Nezaleznasti ave., Minsk, 220030, Belarus
Abstract
Earlier proposed theoretical approach to the band theory of two-dimensional (2D) semimetals based on a self-consistent Dirac–Hartree–Fock field approximation, a quasi-relativistic model of Dirac 2D material in the tight-binding approximation with accounting of p-electron orbitals has been developed. Fermi velocity becomes an operator within this approach. The model admits a Weyl type of charge carriers described by chiral bispinors. Since Weyl fermions in a pair have equal in absolute but opposite in sign values of pseudo- helicity (topological charge), due to the topological charge conservation law Weyl fermions can decay only in pairs. Therefore, in contrast to the Dirac electrons and holes, Weyl fermions turns out to be long-lived quasiparticles. Stability of the band structure of the 2D materials is stipulated by coupling of valley currents with pseudospins of chiral Weyl charge carriers. Numerical simulation of the band structure has been performed for the atomically thin model layers (monolayers) of C and Pb atoms, taking into account only corrections up to 4th order in wave vector. Such features of the band structure of 2D semimetals as appearance of three pairs of Weyl-like nodes; partial removal of Dirac cone and replicas degeneration are shown to be naturally explained within the developed formalism. Since the Dirac cone replica is split into oppositely directed cones, the monolayers of atoms C and Pb are 2D materials, in which pairs of Weyl massless fermions can be excited. Simulation of charge transport in these materials has been performed. Copyright © 2018 VBRI Press.
Keywords
DOI:10.1103/PhysRev.71.622
2.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Gregorieva, I. V.; Firsov, A. A.;, Science
2004, 306, 666.
3.Cohen, M. H.; Blount, E. I.; Philos. Magazine1960, 5, 115.
DOI:10.1080/14786436008243294
4.Lenoir, B.; Cassart, MMichenaud, .; J.-P.; Scherrer, H.; Scherrer,
S.; J. of Phys. and Chem. Solids1996, 57, 89.
DOI:10.1016/0022-3697(95)00148-4
5.Wang, Z.; Sun, Y.; Chen, X.; Franchini, C.; Xu, G.; Weng, H.;
Dai, X.; Fang, Z.; Phys. Rev. 2012, B85, 195320.
DOI:10.1103/PhysRevB.85.195320.
6.Liu, Z. K.; Zhou, B.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.;
Mo, S. K.; Zhang, Y.; Shen, Z. X.; Fang, Z.; Dai, X.; Hussain, Z.;
Chen, Y. L.; Science2014, 343, 864.
DOI:10.1126/science.1245085.
7.Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z.; Phys. Rev.
2013,B88, 125427.
DOI:10.1103/PhysRevB.88.125427.
8.Teo, J. C. Y.; Fu, L.; Kane, C. L.; Phys. Rev. 2008, B78, 045426.
DOI:10.1103/PhysRevB.78.045426.
9.Xu, S.-Y.; Xia, Y.; Wray, L.A.; Jia, S.; Meier, F.; Dil, J. H.;
Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H.; Cava, R. J.;
Hasan, M. Z.; Science2011, 332, 560
DOI: 10.1126/science.1201607
10.Sato, T.; Segawa, K.; Kosaka, K. ; Souma, S.; Nakayama, K.; Eto,
K.; Minami, T.; Ando, Y.; Takahashi, T.; Nature Phys. 2011, 7,
840
DOI:10.1038/nphys2058
11.Paudel, H. P.;. Leuenberger, M. N.; Phys. Rev. 2013, B 88, 085316
DOI:10.1103/PhysRevB.88.085316
12.Zhi-Rong Lin, Guo-Ping Guo, Tao Tu, Qiong Ma and Guang-Can
Guo ; Quantum Computation with Graphene Nanostructure, in
Physics and Applications of Graphene -Theory, Dr. Sergey
Mikhailov (Ed.), InTech, 2011
DOI: 10.5772/15097
13.Han, W.; Kawakami, R. K.; Gmitra,M.; Fabian,J.; Nature
Nanotech. 2014, 9, 794
DOI:10.1038/nnano.2014.214
14.Pesin, D.; MacDonald, A. H.; Nature. Mat.2012, 11, 409
DOI:10.1038/nmat3305
15.Schwierz, F. Nature Nanotech. 2010, 5, 487
DOI:10.1038/nnano.2010.89
16.Xiao-Liang Qi and Shou-Cheng Zhang, Rev. Mod. Phys. 2011, 83,
1057
DOI:10.1103/RevModPhys.83.1057
17.Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;
Geim, A. K.; Rev. Mod. Phys. 2009, 81, 109.
DOI:10.1103/RevModPhys.81.109.
18.Edel’man, V. S.; Sov. Phys. Uspekhi1977, 20, 819.
DOI:10.1070/PU1977v020n10ABEH005467
19.Miranski V.A., Shovkovy I.A.; Phys. Rept2015, 576, 1
DOI:10.1016/j.physrep.2015.02.003
20.Majorana, E.; Nuovo Cimento1932,9, 335
21.Dóra, B.; Gulácsi, M.; Sodano, P.; Phys. Status Solidi2009, RRL 3,
169
DOI: 10.1002/pssr.200903161
22.San-Jose, P.; Lado, J. L.; Aguado, R.; Guinea, F.; Fernández-
Rossier, J.; Phys. Rev. 2015, X5, 041042
DOI: 10.1103/PhysRevX.5.041042
23.Wilczek, F.; Phys. Today1998, 51, 11
24.Balents, L.; Physics2011, 4, 36.
DOI:10.1103/Physics.4.36
25.Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y.;
Phys.Rev.2011, B 83, 205101.
DOI:10.1103/PhysRevB.83.205101
26.Bradlyn, B.; Cano, J.; Wang, Z.; Vergniory, M. G. ; Felser, C.;
Cava, R. J.; Bernevig, B. A. Science2016, 353, 6299
DOI:10.1126/science.aaf5037
27.Xu, S.-Y.; Belopolski,I; Alidoust,N.; Neupane,M.; Bian, G.;
Zhang,C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.-C.; Huang,
Sh.-M.; Zheng,H; Ma, J.; Sanchez, D. S.; Wang,BK. Bansil,A.;
Chou,F.; Shibayev, P.P.; Lin, H.; Jia, S.; Hasan M. Z.; Science
2015, 349, 613
DOI:10.1126/science.aaa9297
28.Lv, B.Q.; Xu, N.; Weng, H. M.; Ma, J. Z. ; Richard, P.; Huang, X.
CZhao, .; L. X. ; Chen, G. F.; Matt, C. E. ; Bisti, F.; Strocov, V.
N.; Mesot, J.; Fang, Z. ; Dai, X. Qian, ;T.; Sh, M.; Ding, H.;
Nature Physics2015,11, 724
DOI:10.1038/NPHYS3426
29.Nadj-Perge, S.; Drozdov, I.K.; Li, J; Chen, H.; Jeon, S.; Seo, J.;
MacDonald, A.H.; Bernevig B.A.; Yazdani, A.; Science2014346,
602
DOI:10.1126/science.1259327
30.Lu, L; Wang, Z; Ye, D; Ran, L; Fu, L; Joannopoulos, J.D;
Soljačić, M; Science2015, 349, 622
DOI:10.1126/science.aaa9273
31.Yang, S. A.; SPIN 2016, 1640003
DOI:10.1142/S2010324716400038
32.Semenoff, G.W. Phys. Rev. Lett. 1984, 53, 2449
DOI:10.1103/PhysRevLett.53.2449
DOI:10.1088/0953-8984/21/32/323201
34.Andrei, E.Y.; Li, G.; Du, X. Rep. Prog. Phys 2012, 75, 056501
DOI:10.1088/0034-4885/75/5/056501
35.Kogan, E. ; Nazarov,V. U.; Silkin, V. M.;Kaveh, M.; Phys. Rev.
2014, B 89, 165430
DOI:10.1103/PhysRevB.89.165430
36.Eschrig, H.; Richter, M.; Opahle, I. Theor. and Comput. Chem.
2004, 13, 723
DOI: 10.1016/S1380-7323(04)80039-6
37.Grushevskaya, H.V.; Krylov, G.G.; J. Nonlinear Phenom.
Complex Syst. 2013, 16, 189
38.Grushevskaya, H.V.; Krylov, G. J. Mod. Phys. 2014, 5, 984
DOI:10.4236/jmp.2014.510100
39.Grushevskaya, H.V.; Krylov,G.G.; Graphene: Beyond the
Massless Dirac's Fermion Approach, in: Nanotechnology in the
Security Systems, NATO Science for Peace and Security Series C:
Environmental Security, Bonća J.; Kruchinin, S. (eds.), Springer
Science+Business Media, Dordrecht, Chapter 3, 2015. P. 21-31.
DOI:10.1007/978-94-017-9005-5_3
40.Grushevskaya, H.V.; Krylov, G,; J. Nonlinear Phenom. Complex
Syst.2015, 18, 266
41.Grushevskaya, H.V.; Krylov, G.; Gaisyonok, V.A.; Serow, D.V.;
J. Nonlinear Phenom. Complex Syst. 2015,18, 81
42.Grushevskaya, H.; Krylov, G; Symmetry2016, 8,60
DOI:10.3390/sym8070060
43.Grushevskaya, H. V.; Krylov, G. G.; Int. J. Mod. Phys., 2016,30,
1642009
DOI:10.1142/S0217979216420091
44.Grushevskaya, H. V.; Krylov, G . G .; Electronic Structure and
Transport inGraphene: QuasiRelativistic Dirac-Hartree-Fock Self-
Consistent Field Approximation In: Graphene Science Handbook:
Electrical and Optical Properties. Vol. 3. Eds. M. Aliofkhazraei, N.
Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni.,Taylor
and Francis Group, CRC Press, USA, UK, Chapter 9., 2016,
117-132.
45.Falkovsky, L.A.; Phys.-Uspekhi2008, 51, 887
46.Peskin, M.E.; Schroeder, D.V.; An Introduction to Quantum Field
Theory; Addison-Wesley Publishing Company: Oxford, UK, 1995.
47.Krylova, H. Hursky, L. Spin polarization in strong-correlated
nanosystems. LAP LAMBERT Academic Publishing,
Saarbru ̈cken, 2013.
48.Ziegler, K. Phys. Rev. 2007, B. 75, 233407.
49.Ando, T.; Zheng, Y.; Suzuura, H.; J. Phys. Soc. Jpn. 2002, 71,
1318.
50.Falkovsky, L.A.; Varlamov, A.A. Eur. Phys. J. 2007, B. 56, 281.
51.Fock, V.A. Principles of Quantum Mechanics; Science, Moscow,
Russia, 1976.
52.Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón, P.; Phys. Rev.
2002, B66, 035412.
53.Davydov A.S.; Quantum mechanics; Science, Moscow, 1973
54.Kharche, N.; ·Boykin, T. B.; Nayak,· S. K.; J Comput Electron
201312, 722
DOI: 10.1007/s10825-013-0524-1
55.Grushevskaya, H. V.; Krylova, N. G. ; Lipnevich, I. V.;
Orekhovskaja, T. I.; Egorova, V. P. ; Shulitski, B. G.; Int. J. Mod.
Phys.2016B30, 1642018
DOI: 10.1142/S0217979216420182