Document Type : Research Article

Authors

Faculty of Physics, Belarusian State University, 4 Nezaleznasti ave., Minsk, 220030, Belarus

Abstract

Earlier proposed theoretical approach to the band theory of two-dimensional (2D) semimetals based on a self-consistent Dirac–Hartree–Fock field approximation, a quasi-relativistic model of Dirac 2D material in the tight-binding approximation with accounting of p-electron orbitals has been developed. Fermi velocity becomes an operator within this approach. The model admits a Weyl type of charge carriers described by chiral bispinors. Since Weyl fermions in a pair have equal in absolute but opposite in sign values of pseudo- helicity (topological charge), due to the topological charge conservation law Weyl fermions can decay only in pairs. Therefore, in contrast to the Dirac electrons and holes, Weyl fermions turns out to be long-lived quasiparticles. Stability of the band structure of the 2D materials is stipulated by coupling of valley currents with pseudospins of chiral Weyl charge carriers. Numerical simulation of the band structure has been performed for the atomically thin model layers (monolayers) of C and Pb atoms, taking into account only corrections up to 4th order in wave vector. Such features of the band structure of 2D semimetals as appearance of three pairs of Weyl-like nodes; partial removal of Dirac cone and replicas degeneration are shown to be naturally explained within the developed formalism. Since the Dirac cone replica is split into oppositely directed cones, the monolayers of atoms C and Pb are 2D materials, in which pairs of Weyl massless fermions can be excited. Simulation of charge transport in these materials has been performed. Copyright © 2018 VBRI Press.

Keywords

1.Wallace, P. R.; Phys. Rev. 1947, 71, 622
DOI:10.1103/PhysRev.71.622

2.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Gregorieva, I. V.; Firsov, A. A.;, Science
2004, 306, 666.

3.Cohen, M. H.; Blount, E. I.; Philos. Magazine1960, 5, 115.
DOI:10.1080/14786436008243294

4.Lenoir, B.; Cassart, MMichenaud, .; J.-P.; Scherrer, H.; Scherrer,
S.; J. of Phys. and Chem. Solids1996, 57, 89.
DOI:10.1016/0022-3697(95)00148-4

5.Wang, Z.; Sun, Y.; Chen, X.; Franchini, C.; Xu, G.; Weng, H.;
Dai, X.; Fang, Z.; Phys. Rev. 2012, B85, 195320.

DOI:10.1103/PhysRevB.85.195320.

6.Liu, Z. K.; Zhou, B.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.;
Mo, S. K.; Zhang, Y.; Shen, Z. X.; Fang, Z.; Dai, X.; Hussain, Z.;
Chen, Y. L.; Science2014, 343, 864.

DOI:10.1126/science.1245085.

7.Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z.; Phys. Rev.
2013,B88, 125427.

DOI:10.1103/PhysRevB.88.125427.

8.Teo, J. C. Y.; Fu, L.; Kane, C. L.; Phys. Rev. 2008, B78, 045426.
DOI:10.1103/PhysRevB.78.045426.

9.Xu, S.-Y.; Xia, Y.; Wray, L.A.; Jia, S.; Meier, F.; Dil, J. H.;
Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H.; Cava, R. J.;
Hasan, M. Z.; Science2011, 332, 560

DOI: 10.1126/science.1201607

10.Sato, T.; Segawa, K.; Kosaka, K. ; Souma, S.; Nakayama, K.; Eto,
K.; Minami, T.; Ando, Y.; Takahashi, T.; Nature Phys. 2011, 7,
840

DOI:10.1038/nphys2058

11.Paudel, H. P.;. Leuenberger, M. N.; Phys. Rev. 2013, B 88, 085316
DOI:10.1103/PhysRevB.88.085316

12.Zhi-Rong Lin, Guo-Ping Guo, Tao Tu, Qiong Ma and Guang-Can
Guo ; Quantum Computation with Graphene Nanostructure, in
Physics and Applications of Graphene -Theory, Dr. Sergey
Mikhailov (Ed.), InTech, 2011

DOI: 10.5772/15097

13.Han
, W.; Kawakami, R. K.; Gmitra,M.; Fabian,J.; Nature
Nanotech. 2014, 9, 794
DOI:10.1038/nnano.2014.214

14.Pesin, D.; MacDonald, A. H.; Nature. Mat.2012, 11, 409
DOI:10.1038/nmat3305

15.Schwierz
, F. Nature Nanotech. 2010, 5, 487
DOI:10.1038/nnano.2010.89

16.Xiao-Liang Qi and Shou-Cheng Zhang, Rev. Mod. Phys. 2011, 83,
1057
DOI:10.1103/RevModPhys.83.1057

17.Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;
Geim, A. K.; Rev. Mod. Phys. 2009, 81, 109.

DOI:10.1103/RevModPhys.81.109.

18.Edel’man, V. S.; Sov. Phys. Uspekhi1977, 20, 819.
DOI:10.1070/PU1977v020n10ABEH005467

19.Miranski V.A., Shovkovy I.A.; Phys. Rept2015, 576, 1
DOI:
10.1016/j.physrep.2015.02.003
20.Majorana, E.; Nuovo Cimento1932,9, 335

21.Dóra, B.; Gulácsi, M.; Sodano, P.; Phys. Status Solidi2009, RRL 3,
169
DOI: 10.1002/pssr.200903161

22.San-Jose, P.; Lado, J. L.; Aguado, R.; Guinea, F.; Fernández-
Rossier, J.; Phys. Rev. 2015, X5, 041042
DOI: 10.1103/PhysRevX.5.041042

23.Wilczek, F.; Phys. Today1998, 51, 11

24.Balents, L.; Physics2011, 4, 36.
DOI:10.1103/Physics.4.36

25.Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y.;
Phys.Rev.2011, B 83, 205101.
DOI:10.1103/PhysRevB.83.205101

26.Bradlyn, B.; Cano, J.; Wang, Z.; Vergniory, M. G. ; Felser, C.;
Cava, R. J.; Bernevig, B. A. Science2016, 353, 6299
DOI:10.1126/science.aaf5037

27.Xu, S.-Y.; Belopolski,I; Alidoust,N.; Neupane,M.; Bian, G.;
Zhang,C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.-C.; Huang,
Sh.-M.; Zheng,H; Ma, J.; Sanchez, D. S.; Wang,BK. Bansil,A.;
Chou,F.; Shibayev, P.P.; Lin, H.; Jia, S.; Hasan M. Z.; Science
2015, 349, 613

DOI:10.1126/science.aaa9297

28.Lv, B.Q.; Xu, N.; Weng, H. M.; Ma, J. Z. ; Richard, P.; Huang, X.
CZhao, .; L. X. ; Chen, G. F.; Matt, C. E. ; Bisti, F.; Strocov, V.
N.; Mesot, J.; Fang, Z. ; Dai, X. Qian, ;T.; Sh, M.; Ding, H.;
Nature Physics2015,11, 724

DOI:10.1038/NPHYS3426

29.Nadj-Perge, S.; Drozdov, I.K.;
Li, J; Chen, H.; Jeon, S.; Seo, J.;
MacDonald, A.H
.; Bernevig B.A.; Yazdani, A.; Science2014346,
602

DOI:10.1126/science.1259327

30.Lu, L; Wang, Z; Ye, D; Ran, L; Fu, L; Joannopoulos, J.D;
Soljačić, M; Science2015, 349, 622

DOI:10.1126/science.aaa9273

31.Yang, S. A.; SPIN 2016, 1640003
DOI:10.1142/S2010324716400038

32.Semenoff, G.W. Phys. Rev. Lett. 1984, 53, 2449
DOI:10.1103/PhysRevLett.53.2449
33.Peres, N M R; J.Phys.: Condens. Matter2009, 21, 323201
DOI:10.1088/0953-8984/21/32/323201

34.Andrei, E.Y.; Li, G.; Du, X. Rep. Prog. Phys 2012, 75, 056501
DOI:
10.1088/0034-4885/75/5/056501
35.Kogan
, E. ; Nazarov,V. U.; Silkin, V. M.;Kaveh, M.; Phys. Rev.
2014, B 89, 165430
DOI:10.1103/PhysRevB.89.165430

36.Eschrig, H.; Richter, M.; Opahle, I. Theor. and Comput. Chem.
2004, 13, 723

DOI: 10.1016/S1380-7323(04)80039-6

37.Grushevskaya, H.V.; Krylov, G.G.; J. Nonlinear Phenom.
Complex Syst. 2013, 16, 189

38.
Grushevskaya, H.V.; Krylov, G. J. Mod. Phys. 2014, 5, 984
DOI:
10.4236/jmp.2014.510100
39.Grushevskaya, H.V.; Krylov,G.G.; Graphene: Beyond the
Massless Dirac's Fermion Approach, in: Nanotechnology in the
Security Systems, NATO Science for Peace and Security Series C:
Environmental Security, Bonća J.; Kruchinin, S. (eds.), Springer
Science+Business Media, Dordrecht, Chapter 3, 2015. P. 21-31.
DOI:10.1007/978-94-017-9005-5_3

40.Grushevskaya, H.V.; Krylov, G,; J. Nonlinear Phenom. Complex
Syst.2015, 18, 266

41.Grushevskaya, H.V.; Krylov, G.; Gaisyonok, V.A.; Serow, D.V.;
J. Nonlinear Phenom. Complex Syst. 2015,18, 81

42.Grushevskaya, H.; Krylov, G; Symmetry2016, 8,60

DOI:10.3390/sym8070060

43.
Grushevskaya, H. V.; Krylov, G. G.; Int. J. Mod. Phys., 2016,30,
1642009

DOI
:10.1142/S0217979216420091
44.
Grushevskaya, H. V.; Krylov, G . G .; Electronic Structure and
Transport in
Graphene: QuasiRelativistic Dirac-Hartree-Fock Self-
Consistent Field Approximation In: Graphene Science Handbook:

Electrical and Optical Properties. Vol. 3. Eds. M. Aliofkhazraei, N.

Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J
.L. Gervasoni.,Taylor
and Francis Group, CRC Press, USA, UK, Chapter 9.,
2016,
117
-132.
45.Falkovsky, L.A.; Phys.-Uspekhi2008, 51, 887

46.Peskin, M.E.; Schroeder, D.V.; An Introduction to Quantum Field
Theory; Addison-Wesley Publishing Company: Oxford, UK, 1995.

47.Krylova, H. Hursky, L. Spin polarization in strong-correlated
nanosystems. LAP LAMBERT Academic Publishing,
Saarbru ̈cken, 2013.

48.Ziegler, K. Phys. Rev. 2007, B. 75, 233407.

49.Ando, T.; Zheng, Y.; Suzuura, H.; J. Phys. Soc. Jpn. 2002, 71,
1318.

50.
Falkovsky, L.A.; Varlamov, A.A. Eur. Phys. J. 2007, B. 56, 281.
51.Fock, V.A. Principles of Quantum Mechanics; Science, Moscow,
Russia, 1976.

52.Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón, P.; Phys. Rev.
2002, B66, 035412.

53.Davydov A.S.; Quantum mechanics; Science, Moscow, 1973

54.Kharche, N.; ·Boykin, T. B.; NayakS. K.; J Comput Electron
201312, 722
DOI: 10.1007/s10825-013-0524-1

55.
Grushevskaya, H. V.; Krylova, N. G. ; Lipnevich, I. V.;
Orekhovskaja, T. I.; Egorova, V. P. ; Shulitski, B. G.;
Int. J. Mod.
Phys.
2016B30, 1642018
DOI
: 10.1142/S0217979216420182