Document Type : Research Article


Faculty of Physics, Belarusian State University, 4 Nezaleznasti ave., Minsk, 220030, Belarus


Earlier proposed theoretical approach to the band theory of two-dimensional (2D) semimetals based on a self-consistent Dirac–Hartree–Fock field approximation, a quasi-relativistic model of Dirac 2D material in the tight-binding approximation with accounting of p-electron orbitals has been developed. Fermi velocity becomes an operator within this approach. The model admits a Weyl type of charge carriers described by chiral bispinors. Since Weyl fermions in a pair have equal in absolute but opposite in sign values of pseudo- helicity (topological charge), due to the topological charge conservation law Weyl fermions can decay only in pairs. Therefore, in contrast to the Dirac electrons and holes, Weyl fermions turns out to be long-lived quasiparticles. Stability of the band structure of the 2D materials is stipulated by coupling of valley currents with pseudospins of chiral Weyl charge carriers. Numerical simulation of the band structure has been performed for the atomically thin model layers (monolayers) of C and Pb atoms, taking into account only corrections up to 4th order in wave vector. Such features of the band structure of 2D semimetals as appearance of three pairs of Weyl-like nodes; partial removal of Dirac cone and replicas degeneration are shown to be naturally explained within the developed formalism. Since the Dirac cone replica is split into oppositely directed cones, the monolayers of atoms C and Pb are 2D materials, in which pairs of Weyl massless fermions can be excited. Simulation of charge transport in these materials has been performed. Copyright © 2018 VBRI Press.


1.Wallace, P. R.; Phys. Rev. 1947, 71, 622

2.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Gregorieva, I. V.; Firsov, A. A.;, Science
2004, 306, 666.

3.Cohen, M. H.; Blount, E. I.; Philos. Magazine1960, 5, 115.

4.Lenoir, B.; Cassart, MMichenaud, .; J.-P.; Scherrer, H.; Scherrer,
S.; J. of Phys. and Chem. Solids1996, 57, 89.

5.Wang, Z.; Sun, Y.; Chen, X.; Franchini, C.; Xu, G.; Weng, H.;
Dai, X.; Fang, Z.; Phys. Rev. 2012, B85, 195320.


6.Liu, Z. K.; Zhou, B.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.;
Mo, S. K.; Zhang, Y.; Shen, Z. X.; Fang, Z.; Dai, X.; Hussain, Z.;
Chen, Y. L.; Science2014, 343, 864.


7.Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z.; Phys. Rev.
2013,B88, 125427.


8.Teo, J. C. Y.; Fu, L.; Kane, C. L.; Phys. Rev. 2008, B78, 045426.

9.Xu, S.-Y.; Xia, Y.; Wray, L.A.; Jia, S.; Meier, F.; Dil, J. H.;
Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H.; Cava, R. J.;
Hasan, M. Z.; Science2011, 332, 560

DOI: 10.1126/science.1201607

10.Sato, T.; Segawa, K.; Kosaka, K. ; Souma, S.; Nakayama, K.; Eto,
K.; Minami, T.; Ando, Y.; Takahashi, T.; Nature Phys. 2011, 7,


11.Paudel, H. P.;. Leuenberger, M. N.; Phys. Rev. 2013, B 88, 085316

12.Zhi-Rong Lin, Guo-Ping Guo, Tao Tu, Qiong Ma and Guang-Can
Guo ; Quantum Computation with Graphene Nanostructure, in
Physics and Applications of Graphene -Theory, Dr. Sergey
Mikhailov (Ed.), InTech, 2011

DOI: 10.5772/15097

, W.; Kawakami, R. K.; Gmitra,M.; Fabian,J.; Nature
Nanotech. 2014, 9, 794

14.Pesin, D.; MacDonald, A. H.; Nature. Mat.2012, 11, 409

, F. Nature Nanotech. 2010, 5, 487

16.Xiao-Liang Qi and Shou-Cheng Zhang, Rev. Mod. Phys. 2011, 83,

17.Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;
Geim, A. K.; Rev. Mod. Phys. 2009, 81, 109.


18.Edel’man, V. S.; Sov. Phys. Uspekhi1977, 20, 819.

19.Miranski V.A., Shovkovy I.A.; Phys. Rept2015, 576, 1
20.Majorana, E.; Nuovo Cimento1932,9, 335

21.Dóra, B.; Gulácsi, M.; Sodano, P.; Phys. Status Solidi2009, RRL 3,
DOI: 10.1002/pssr.200903161

22.San-Jose, P.; Lado, J. L.; Aguado, R.; Guinea, F.; Fernández-
Rossier, J.; Phys. Rev. 2015, X5, 041042
DOI: 10.1103/PhysRevX.5.041042

23.Wilczek, F.; Phys. Today1998, 51, 11

24.Balents, L.; Physics2011, 4, 36.

25.Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y.;
Phys.Rev.2011, B 83, 205101.

26.Bradlyn, B.; Cano, J.; Wang, Z.; Vergniory, M. G. ; Felser, C.;
Cava, R. J.; Bernevig, B. A. Science2016, 353, 6299

27.Xu, S.-Y.; Belopolski,I; Alidoust,N.; Neupane,M.; Bian, G.;
Zhang,C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.-C.; Huang,
Sh.-M.; Zheng,H; Ma, J.; Sanchez, D. S.; Wang,BK. Bansil,A.;
Chou,F.; Shibayev, P.P.; Lin, H.; Jia, S.; Hasan M. Z.; Science
2015, 349, 613


28.Lv, B.Q.; Xu, N.; Weng, H. M.; Ma, J. Z. ; Richard, P.; Huang, X.
CZhao, .; L. X. ; Chen, G. F.; Matt, C. E. ; Bisti, F.; Strocov, V.
N.; Mesot, J.; Fang, Z. ; Dai, X. Qian, ;T.; Sh, M.; Ding, H.;
Nature Physics2015,11, 724


29.Nadj-Perge, S.; Drozdov, I.K.;
Li, J; Chen, H.; Jeon, S.; Seo, J.;
MacDonald, A.H
.; Bernevig B.A.; Yazdani, A.; Science2014346,


30.Lu, L; Wang, Z; Ye, D; Ran, L; Fu, L; Joannopoulos, J.D;
Soljačić, M; Science2015, 349, 622


31.Yang, S. A.; SPIN 2016, 1640003

32.Semenoff, G.W. Phys. Rev. Lett. 1984, 53, 2449
33.Peres, N M R; J.Phys.: Condens. Matter2009, 21, 323201

34.Andrei, E.Y.; Li, G.; Du, X. Rep. Prog. Phys 2012, 75, 056501
, E. ; Nazarov,V. U.; Silkin, V. M.;Kaveh, M.; Phys. Rev.
2014, B 89, 165430

36.Eschrig, H.; Richter, M.; Opahle, I. Theor. and Comput. Chem.
2004, 13, 723

DOI: 10.1016/S1380-7323(04)80039-6

37.Grushevskaya, H.V.; Krylov, G.G.; J. Nonlinear Phenom.
Complex Syst. 2013, 16, 189

Grushevskaya, H.V.; Krylov, G. J. Mod. Phys. 2014, 5, 984
39.Grushevskaya, H.V.; Krylov,G.G.; Graphene: Beyond the
Massless Dirac's Fermion Approach, in: Nanotechnology in the
Security Systems, NATO Science for Peace and Security Series C:
Environmental Security, Bonća J.; Kruchinin, S. (eds.), Springer
Science+Business Media, Dordrecht, Chapter 3, 2015. P. 21-31.

40.Grushevskaya, H.V.; Krylov, G,; J. Nonlinear Phenom. Complex
Syst.2015, 18, 266

41.Grushevskaya, H.V.; Krylov, G.; Gaisyonok, V.A.; Serow, D.V.;
J. Nonlinear Phenom. Complex Syst. 2015,18, 81

42.Grushevskaya, H.; Krylov, G; Symmetry2016, 8,60


Grushevskaya, H. V.; Krylov, G. G.; Int. J. Mod. Phys., 2016,30,

Grushevskaya, H. V.; Krylov, G . G .; Electronic Structure and
Transport in
Graphene: QuasiRelativistic Dirac-Hartree-Fock Self-
Consistent Field Approximation In: Graphene Science Handbook:

Electrical and Optical Properties. Vol. 3. Eds. M. Aliofkhazraei, N.

Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J
.L. Gervasoni.,Taylor
and Francis Group, CRC Press, USA, UK, Chapter 9.,
45.Falkovsky, L.A.; Phys.-Uspekhi2008, 51, 887

46.Peskin, M.E.; Schroeder, D.V.; An Introduction to Quantum Field
Theory; Addison-Wesley Publishing Company: Oxford, UK, 1995.

47.Krylova, H. Hursky, L. Spin polarization in strong-correlated
nanosystems. LAP LAMBERT Academic Publishing,
Saarbru ̈cken, 2013.

48.Ziegler, K. Phys. Rev. 2007, B. 75, 233407.

49.Ando, T.; Zheng, Y.; Suzuura, H.; J. Phys. Soc. Jpn. 2002, 71,

Falkovsky, L.A.; Varlamov, A.A. Eur. Phys. J. 2007, B. 56, 281.
51.Fock, V.A. Principles of Quantum Mechanics; Science, Moscow,
Russia, 1976.

52.Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón, P.; Phys. Rev.
2002, B66, 035412.

53.Davydov A.S.; Quantum mechanics; Science, Moscow, 1973

54.Kharche, N.; ·Boykin, T. B.; NayakS. K.; J Comput Electron
201312, 722
DOI: 10.1007/s10825-013-0524-1

Grushevskaya, H. V.; Krylova, N. G. ; Lipnevich, I. V.;
Orekhovskaja, T. I.; Egorova, V. P. ; Shulitski, B. G.;
Int. J. Mod.
2016B30, 1642018
: 10.1142/S0217979216420182