Document Type : Research Article

Authors

1 Graduate Program on Health Technology, Pontifical Catholic University of Paraná, Curitiba, 80215-901, Brazil

2 Rehabilitation Engineering Laboratory, Pontifical Catholic University of Paraná, Curitiba, 80215-901, Brazil

Abstract

Accidental falls may occur in the elderly, especially older than 65 years. Among the intrinsic factors that corroborate this fatality are the physiological changes resulting from the aging process. Factors such as inadequate lighting, uneven ground, or some obstacles along the way also contribute to falls. The literature indicates most falls occur in the domestic environment. In some cases, falls can cause serious injuries, such as bone fractures and head injuries. In these cases, intervention time to treat a person who has fallen is crucial. In this study, we developed a Wi-Fi fall detector buckle to be used indoors at waist height by the elderly. For testing purposes, we assumed a simple detection threshold that identifies a fall whenever the absolute value recorded by the accelerometer is greater than 2.3 g and the angle formed between the y-axis and the vertical sagittal axis of the buckle device is greater than 60°. The device is functional, adjustable, flexible and inexpensive. It is functional because it can differentiate falls from ADL with 84.1% accuracy, adjustable because it allows to change the fall detection threshold, flexible for including new detection algorithms and cheap because it uses components available in abundance in the market. 

Keywords

1.Tamura, T.; Yoshimura, T.; Sekine, M.; Uchida, M.; Tanaka, O.;
IEEE T. Inf.
Technol. B., 2009, 13, 910.
2.Tinetti, M. E.; Speechley, M.;New Engl. J. Med., 1989, 320,
1055.

3.Hausdorff, J. M.; Rios, D. A.; Edelberg, H. K.; Arch. Phys. Med.
Rehab., 2001, 82, 1050.

4.Graafmans, W. C.; Ooms, M. E.; Hofstee, H. M. A.; Bezemer,
P. D.; Bouter, L. M.; Lips, P.; Am. J. Epidemiol., 1996, 143,
1129.

5.Woolcott, J. C.; Richardson, K. J.; Wiens, M. O.; Patel, B.;
Marin, J.; Khan, K. M.; Marra, C. A.; Arch. Intern. Med., 2009,
169, 1952.

6.Kannus, P.; Sievänen, H.; Palvanen, M.; Järvinen, T.; Parkkari,
J.; Lancet,2005,366(9500), 1885.

7.Lee, A.; Lee, K.-W.; Khang, P.; Permanente Journal, 2013, 17,
37.

8.Kachhwaha, R.; International Journal of Health Sciences and
Research,2018, 8, 104.

9.Berg, R. L.; Cassells, J. S. Falls in older persons: risk factors and
prevention, in The second fifty years: Promoting health and
preventing disability, National Academies Press: USA, 1992,
pp. 263-290.

10.Akyol, A. D.; Int. Nurs. Rev., 2007, 54, 191.

11.Shany, T.; Redmond, S. J.; Narayanan, M. R.; Lovell, N. H.;
IEEE Sens. J., 2012, 12, 658.

12.Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J.; IEEE T.
Circ. Syst. Vid., 2011, 21, 611.

13.Fan, X.; Zhang, H.; Leung, C.; Shen, Z. Fall Detection with
Unobtrusive Infrared Array Sensors, in Multisensor Fusion and
Integration for Intelligent Systems, 2017, pp. 253-267.

14.Nadee, C.; Chamnongthai, K. Ultrasonic array sensors for
monitoring of human fall detection, in 12th International
Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-
CON), 2015, pp. 1-4.

15.Montanini, L.; Del Campo, A.; Perla, D.; Spinsante, S.; Gambi,
E.;IEEE Sens. J., 2018, 18, 1233.

16.Xia, Y.; Wu, Y.; Zhang, B.; Li, Z.; He, N.; Li, S.; J. Nanosci.
Nanotechno., 2015, 15, 4367.

17.Zheng, J.; Zhang, G.; Wu, T.;Design of automatic fall detector
for elderly based on triaxial accelerometer, in Bioinformatics
and Biomedical Engineering, 2009.ICBBE 2009. 3rd
International Conference on, 2009, pp. 1-4.

18.Lim, D.; Park, C.; Kim, N. H.; Kim, S.-H.; Yu, Y. S.; J. Appl.
Math., 2014, 2014, 8.

19.López, A.; Pérez, D.; Ferrero, F. J.; Postolache, O.;A Real-Time
Algorithm to Detect Falls in the Elderly, in 2018 IEEE
International Symposium on Medical Measurements and
Applications (MeMeA), 2018, pp. 1-5.

20.Yuwono, M.; Moulton, B. D.; Su, S. W.; Celler, B. G.; Nguyen,
H. T.; Biomed.
Eng. Online, 2012,11, 9.
21.Jung, S.; Hong, S.; Kim, J.; Lee, S.; Hyeon, T.; Lee, M.; Kim,
D.-H.; Sci Rep, 2015,5, 17081.

22.Igual, R.; Medrano, C.; Plaza, I.; Biomed.
Eng. Online, 2013, 12,
66.

23.Gövercin, M.; Költzsch, Y.; Meis, M.; Wegel, S.; Gietzelt, M.;
Spehr, J.; Winkelbach, S.; Marschollek, M.; Steinhagen-
Thiessen, E.; Informatics for Heath and Social Care, 2010, 35,
177.

24.Chan, M.; Estève, D.; Fourniols, J.Y.; Escriba, C.; Campo, E.;
Artif.
Intell. Med., 2012, 56, 137.
25.Fuller, G. F. Falls in the elderly, Am. Fam. Physician, 2000, 61,
2159.

26.Evans, D.; Hodgkinson, B.; Lambert, L.; Wood, J.;Int. J. Nurs.
Pract., 2001, 7, 38.

27.Myers, H.; Nikoletti, S.; Int. J. Nurs. Pract., 2003, 9, 158.

28.Oliver, D.; Daly, F.; Martin, F. C.; McMurdo, M. E. T.; Age
Ageing, 2004, 33, 122.

29.Prudham, D.; Evans, J. G.; Age Ageing, 1981, 10, 141.

30.Lara, O. D.; Labrador, M. A.;IEEE Commun.
Surv. Tut., 2013,
15
, 1192.
31.Kangas, M.; Konttila, A.; Lindgren, P.; Winblad, I.; Jämsä, T.;
Gait Posture, 2008, 28, 285.

32.Lin, C.C.; Yang, C.Y.; Zhou, Z.; Wu, S.; Int. J. Distrib. Sens.
N.,2018, 14, 1.