Document Type : Review Article

Authors

1 Chemical Engineering Department, Gharda Institute of Technology, Khed, Maharashtra 415708, India

2 Chemical Engineering Department, K.B.C. North Maharashtra University, Jalgaon, Maharashtra 425001, India

Abstract

Many pollutants like acid gases, organic gases and inorganic gases are removed from gas mixtures by using adsorption. Regeneration of the adsorbent bed is an important aspect of successful adsorption technology. Adsorption-desorption cycle is governed by changes in pressure or temperature. These methods are termed as pressure swing (PSA) and temperature swing adsorption (TSA). For intensification of the process, it is envisaged to have an equal duration of the adsorption and desorption phases. Temperature swing adsorption (TSA) process can be intensified by employing several methods such as thermal conductivity promoter, thermoelectric elements and cyclic operating mode. Poor conductivity of the adsorbents is also one of the reasons for extended cycle time. Use of conducting materials in the form of composite fins for increasing the heat transfer through porous beds can reduce the adsorption-desorption cycle time. Also use of electrothermal swing adsorption (ESA) with thermoelectric element can intensify the adsorption-desorption process. Thermoelectric element converts current to temperature and vice versa. When there is difference in temperature, electric current of proportional magnitude is generated. Pressure swing (PSA) technology can also be intensified by using process engineering tools. Circulation fluidized beds can be used for dehumidification and also adsorption of volatile organic compounds (VOCs). Uniform bed temperature and mass transfer are advantages of circulation fluidized beds. In this paper, investigations on intensification of adsorption beds are discussed.

Graphical Abstract

An Insight into Investigations on Intensification of Adsorbent Beds

1.Patel, H.; Applied Water Science,2019,9,45.
2.Sharma,I; Hoadley, A.; Mahajani, S.; Ganesh, A.; Chemical
Engineering Transactions, 2014, 39,1111.

3.Ko, D.; Siriwardane, R.; Biegler, L. T.; 2002 AIChE Annual
meeting, Indianapolis, Indiana, USA, Nov. 6, 2002.

4.Ko
,D.;Siriwardane,R.;Biegler,L.; Ind. Eng. Chem. Res.,2003,
42,339.

5.Ko, D.;
Siriwardane,R.;Biegler,L.; Presentation at the 2004
AIChE Annual Meeting, Austin Convention Center Austin, TX,
November 7-12 PSA/TSA,2004.

6.
Rajasree, R.;Moharir, A.S.; Comput Ch E, 2000, 24,2493.
7.
Wright, A.; Kalbassi, M.;Golden, T.;2005AIChEAnnual
Meeting
, Seperation Division, Nov.3, 2005.
8.Grande, C.; International Scholarly Research Network ISRN
Chemical Engineering,Volume 2012,Article ID 982934, 13 pages.

9.Nikolic, D.; Kikkinides, E.; and Georgiadis, M.; Industrial and
Engineering Chemistry Research, 2009, 48,5388.

10.Rao, V.; S. Farooq, S.; Krantz, W.; AIChE Journal, 2010, 56,354.

11.Nikolic, D.; Giovanoglou, A.; Georgiadis, M.; Kikkinides, E.;
Industrialand Engineering Chemistry Research, 2008, 47,3156.

12.Beck, J.; A Thesis Submitted for the Degree of Doctor of
Philosophy at the University College London. Department of
Chemical Engineering University College London (UCL)
Torrington Place, London WC1E 7JE, United Kingdom

13.Grande, C.; Cavenati, S.; Rodrigues, A.E.; 2nd Mercosur Congress
on Chemical Engineering 4th Mercosur Congress on Process
Systems Engineering,1-11,

14.Khajuria, H.; A thesis submitted to Imperial College London for the
degree of Doctor of Philosophy, Center for Process System
Engineering, Department of Chemical Engineering, Imperial
College London, United Kingdom November, 2011.

15.Metz, B.;
TanczykM.; Jaschik, M.;Janusz-Cyg,A.; Energy
Procedia
, 2013, 37,2154.
16.Warmuzinski
, K.; Tanczyk, M.;Jaschik, M.;Janusz-Cyg, A,;
Energy Procedia,2013,37,2154.

17.Sutradhar, P.;Maity, P.; Kar, S.; Poddar, S.; International Journal
of Innovative Technology and Exploring Engineering, 2019, 8,64.

18.Agarwal, A.; Biegler, L.; Zitney, S.; Ind. Eng. Chem. Res., 2010,
49,5066.

19.Kunisch, K., and Volkwein, S.; J. Opt. Theory Applic.,1999, 102,
345.

20.Yuan, T.; Cizmas, P.; and O’Brien, T.; Comput. Chem. Eng., 2005,
30,243.

21.Cruz, P.; Santos, J.; Magalhaes, F.; Mendes, A., Comput. Chem.
Eng., 2005, 30,83.

22.Agarwal, A.; Biegler, L.;Zitney, S.;Industrial and Engineering
ChemistryResearch, March 2009, 37P.

23.Shafeeyan, M.;Daud, W.; Shamiri, A.;Chemical Engineering
Research and Design, 2014, 92,961.

24.Beeyani, A.; Singh, K.; Vyasa, R.; Kumar, S.; Surendra S., R.;
Polish Journal of Chemical Technology, 2010, 12,18.

25.Dowling, A.; Vetukuri, R.; Biegler, L.; Large-Scale Optimization
Strategies for Pressure Swing Adsorption Cycle Synthesis, October
15, 2012 in Wiley Online Library (wileyonlinelibrary.com).

26.Picioccio, K; Zagoria, A.; Options for improving hydrogen network
operations. Tech. Rep. National Petrochemical & Refiners
Association, In: 107th NPRA Annual Meeting, Houston, TX, 2009.

27.Nikolakis, V.; HY2SEPS EU Framework 6 Project. Tech. Rep.
2009. Available at:
http://hy2seps.iceht.forth.gr.
28.Kumar, R; Shah, M.; Adsorption based hybrid technology to
recover CO2. Tech. Rep. In: Paper 404f presented at Annual AIChE
Meeting, Nashville, TN, 2009.

29.Ho, M.; Allinson, G.; Wiley, D.; Ind. Eng. Chem. Res., 2008, 47,
4883.

30.Na, B. K.; Lee, H.; Koo, K. K.; Song, H. K.; Ind. Eng. Chem. Res.,
2002, 41,5498.

31.Na, B. K.; Koo, K. K.; Eum, H. M.; Lee, H.; Song, H. K.; Korean
J. Chem. Eng., 2001, 18,220.

32.Yoshida, M.; Ritter, J. A.; Kodama, A.; Goto, M.; Hirose, T.; Ind.
Eng. Chem. Res.; 2003, 42,1795.

33.Pahinkar, D.; Temperature Swing Adsorption Processes For Gas
Separation, A Dissertation Presented to The Academic Faculty,
Georgia Institute of Technology, December 2016.

34.Pahinkar, D.; Garimella S.; Robbins,T.; Industrial& Engineering
Chemistry Research, 2015, 54,10103.

35.Pahinkar, D. G., Garimella, S., Robbins, T.R., Industrial &
Engineering Chemistry Research,2017,56,5403.

36.
Al Wahedi, Y.; Optimization of Temperature Swing Adsorption
Systems for the
Purpose of Claus Tail Gas Clean Up, A thesis
submitted to the faculty of the graduate school of the University of

Minnesota, June
2012, 8-21
37.
Moate, J. R.;M. D. LeVan, M., D.; Applied Thermal Engineering,
2010
, 30,658.
38.Stegmaier, M., Linde A.G; Nonideal gas simulation of pressure
swing adsorption processes, 29 May 3 June 2016Graf-Zeppelin-
Haus.Friedrichshafen/Lake ConstanceGermany FOA12 12th
International Conferenceon the Fundamentals of Adsorption

www.dechema.de/foa2016
.
39.Luo, L.; Intensification of Adsorption Process in Porous Media,
Heat and Mass Transfer Intensification and Shape Optimization,
Springer-Verlag London 2013, pp.19-34.

40.Rajagopalan, A.; Material selection and process design for
adsorptive CO2 capture, A thesis submitted in partial fulfillment of
the requirements for the degree of Master of Science, Department
of Chemical and Materials Engineering University of Alberta,
2015.

41.Sircar, S.; Golden, T.;Rao, M., Carbon, 1996, 34,1.

42.Kulkarni, S.,J.; International Journal of Petroleum and
Petrochemical Engineering, 2016, 2,1.

43.Kulkarni, S.; Kaware, J.;Sci. Revs. Chem. Commun.,2016, 6, 1.

44.Kulkarni, S.; Kaware, J.; Journal ofChemical,Biologicaland
PhysicalSciences,2015, 5,1146.

45.Kulkarni, S., Kaware, J.; SRG International Journal of Chemical
Engineering Research, 2014, 2,1.

46.Kulkarni, S.;Kaware, J.; Int. J. of Thermal & Environmental
Engineering, 2015, 9,75.

47.Kulkarni, S.;Kaware, J.; Int. J. Environmental Engineering,2015,
7,131.

48.Kulkarni, S.;Kaware, J.; International Journal of Scientific
Research in Chemical Engineering, 2015, 2,014.

49.Mamatha, M.; Aravinda, H.; Manjappa, S.; Puttaiah, E.; Journal of
Environmental Sc., Toxicology and Food Technology, 2012, 2,1.

50.Srivastava, V.C.;Mall,I.D.; Mishra, I.M.; Chemical Engineering
Journal, 2006, 117,79.

51.Boparai, H.K.; Meera, J.; Carroll, D.O.; J. Hazardous Mater, 2010,
15,18.

52.Torab-Mostaedi, M.; Ghassabzadeh, H.; Ghannadi M., Ahmadi, S.;
Taheri, H.;Brazilian Journalof Chemical Engineering, 2010, 27,
299.

53.Gowda, R.; Nataraj, A., Rao, N.; International Journal of Scientific
& EngineeringResearch, 2012, 2,1.

54.Millward A.; Yaghi, O.;J. Am. Chem. Soc., 2005, 127,17998.

55.Broom, D.; Characterizing adsorbents for gas separation, Chemical
Engineering Process, March 2018, American Inst.of Ch.Engg.
www.AICHE.org/cep.

56.Wood,K.; Liu, Y.; Yu, Y.;Design, Simulationand Optimization
of Adsorptive and Chromatographic Separations: A Hands -On
Approach, First Edition, 2018Wiley-VCH Verlag GmbH &Co.
KGaA.Published2018 by Wiley-VCH Verlag GmbH &Co.
KGaA.

57.Stefański, S.;Mika, L.;Sztekler, K.;Kalawa, W.; Lis, L.; Nowak,
W.; Adsorption bed configurations for adsorption cooling

application, E3S Web of Conferences 108, 01010 (2019) Energy
andFuels2018.

58.Krutka, H.; Sjostrom, S.; Evaluation of Solid Sorbents asa Retrofit
Technology for CO2Capture from Coal-fired Power Plants -Final
Technical Report. ADA-Environmental Solutions, 2011.

59.Meghani, B.; Moving bed temperature swing adsorption processes
for post-combustion CO2capture. Ph.D.thesis, University of
Nottingham, 2015.Access from the University of Nottingham
repository:
http://eprints.nottingham.ac.uk/29140/1/Thesis.pdf
60.Yu, Y.; Simulation and Comparison of Operational Modes in
Simulated Moving Bed Chromatography and Gas-Phase
Adsorptive Separation, the faculty of the Virginia Polytechnic
Institute and State University, December 02, 2015Blacksburg,
VA

61.
Song, W.; Tondeur, D.; Luo, L.; Jinghai, L.;Adsorption,2005,11,
853.