Document Type : Research Article
Authors
1 Atomic Minerals Department for Exploration and Research, Department of Atomic Energy, Delhi, 110066, India
2 National Institute of Technology, Department of Physics, Jalandhar, Punjab, 144011, India
Abstract
In this paper we investigate the effect of lanthanum doping on structural, dielectric and electrical properties of lead magnesium niobate - lead titanate, 0.65Pb(Mg1/3Nb2/3O3)- 0.35PbTiO3 (x=0, 0.02, 0.05) ferroelectric ceramics. Dielectric and AC impedance spectroscopic measurements were carried out on pure and lanthanum doped PMN/PT ceramics over a wide temperature (30o- 450o C) and frequency interval (10 Hz-1 MHz). Pure and lanthanum doped Pb1-xLax[(Mg1+x/3Nb2-x/3)0.65Ti0.35(1-x/4)]O3, (x=0, 0.02, 0.05) ceramics were prepared by solid state reaction route using columbite precursor method. X-ray diffraction revealed tetragonal (P4mm) phase for pure PMN/PT ceramics and transition to pseudo cubic phase (Pm3m) was observed with increased lanthanum doping. The dielectric response of the lanthanum modified PMN/PT ceramics was interpreted in terms of modified curie weiss law. Modulus spectroscopy revealed the deviation of dielectric behavior from ideal Debye behaviour. Activation energies calculated from dielectric relaxation and modulus spectroscopy suggested that charge transport processes are due to oxygen ion hopping.The AC conductivity of the PMN/PT ceramics initially increased for 2 mol% of lanthanum doping followed by a subsequent decrease with further 5 mol% of lanthanum doping. The value of the activation energies calculated from the temperature dependance of ac conductivity was in the range from 1.20-1.48 ev which is due to doubly ionized oxygen vacancies. The overall structural, electrical and dielectric behaviour of Pb1-xLax[(Mg1+x/3Nb2-x/3)0.65Ti0.35(1-x/4)]O3, (x=0, 0.02, 0.05) ceramics is correlated to the relaxor nature induced by lanthanum doping.
Keywords
DOI:http://dx.doi.org/10.1063/1.365983
2.Shrout T. R.; Fielding Jr. J; Proc. IEEE, 1964,35, 711.
DOI: http://dx.doi.org/10.1109/ULTSYM.1990.171456
3.Cross, L.; Jang, S.; Newnham, R.; Nomura, S., Uchino, K.,
1980, 23, 187.
DOI:http://dx.doi.org/10.1080/00150198008018801
4.Pandit, P.; Wadhawan, V. K.; Gupta, S. M.; Smart Mater.
Struc., 2006,15, 653.
DOI:http://dx.doi.org/10.1080/00150198008018801
5.Pandit, P; Wadhawan, V. K.; Gupta, S. M.; Smart Mater.
Struc., 2007, 16, 1246.
DOI:http://dx.doi.org/10.1088/0964-1726/16/4/036
6.Noheda, B.; Cox, D. E.; Shirane, G.; Z.-G. Ye; Gao, J; Phys.
Rev. B., 2002,66, 054104.
DOI:http://dx.doi.org/10.1103/PhysRevB.66.054104
Phys. Rev. B., 2001,64,184114.
DOI:http://dx.doi.org/10.1103/PhysRevB.64.184114
8.Kiat, J. M.;, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert,
Calvarin G. ; Phys. Rev. B., 2002,65, 064106.
DOI:http://dx.doi.org/10.1103/PhysRevB.65.064106
9.Shaw J.C. ; Liu K. S.; I. N. Lin Scripta Metall. et Material,
1993, 29,981.
DOI: http://dx.doi.org/10.1016/0956-716X(93)90394-8
10.Blinc, R.. ; Dolinˇsek, J.; Gregoroviˇc, A.; Zalar, B.; Filipiˇc,
C.; Kutnjak, Z.; Levstik, A.; Pirc, R., Phy.Rev.Lett. 1999,
83,424
DOI:http://dx.doi.org/10.1103/PhysRevLett.83.424
11.Pirc, R.; Blinc, R; Phys. Rev. B., 1999, 60, 13470.
DOI:http://dx.doi.org/10.1103/PhysRevB.60.13470
12.Ghosh V J; Nielsen B; Friessnegg T.; Phys. Rev. B., 2000,
61,207.
DOI: http://dx.doi.org/10.1103/PhysRevB.61.207
13.Badillo, F.A.N.L.; Eiras, J. A.; Milton, F. P; Garcia, D;
Opt. Photonics J., 2012, 2, 157.
DOI: http://dx.doi.org/10.4236/opj.2012.23023
14.James A. R.; Srinivas K; Mater. Res.Bull, 1999, 8, 1301.
DOI:http://dx.doi.org/10.1016/S0025-5408(99)00127-0
15.James, A. R.; Priya, S. ; Uchino K., ; Srinivas, K; J. Appl.
Phys., 2001, 90, 3504.
DOI:http://dx.doi.org/10.1063/1.1401802
16.Gupta S. M.; Prasad N. V. ; WadhawanV. K.;
Ferroelectrics,2005, 326, 43.
DOI:http://dx.doi.org/10.1080/00150190500318222
17.Macdonald, J. R. (Eds); Impedance spectroscopy
Emphasizing Solid Materials and systems, John Wiley &
sons, 1987.
18.Johnscher A. K. (Eds); Dielectric Materials in Solids;
Chelsea :London 1983.
19.Swartz, S. L.; Shrout , T. R.; Mat. Res. Bull., 1982, 17, 1245.
DOI:10.1016/0025-5408(82)90159-3
20.Chou .X; Zhai. J; Jiang, H. ; Yao, X. J.; Appl. Phys., 2007,
102, 084106.
DOI:10.1063/1.2799081
21.Gupta, S. M.; Pandit, Pragya; Wadhwan, V.K; Mater. Sci. &
Engg. B., 2005, 120, 125.
DOI:http://dx.doi.org/10.1016/j.mseb.2005.02.013
22.Uchino K.; Nimura S., Ferroelectrics, 1982,216, 11.
23.Singh, G.; Tiwari, V. S.; Gupta, P. K; J. Appl. Phys., 2007,
107, 064103.
DOI:http://dx.doi.org/10.1063/1.3309745
24.S. Rachna. ; Bhattacharyya. S. ; Gupta, S. M; Mater. Sci. &
Engg. B., 2010, 175, 207.
DOI:http://dx.doi.org/10.1016/j.mseb.2010.07.029
25.Fayek M. K., Mostafa M. F. Sayedahmed F, Ataallah SS and
Kaiser M; J. Magn. Magn. Mater., 2000, 210, 189.
DOI:http://dx.doi.org/10.1103/PhysRevB.67.144519
26.Gopalan E. V.; Malini, K.A. ; Saravanan S.; , Sakthi Kumar
D.; Yoshida. Y.; Anantharaman M. R.; J. Phys. D: Appl.
Phys., 2008, 41.
DOI:http://dx.doi.org/10.1088/0022-3727/41/18/185005
27.Austin, I.G. ; Mott, M.F.; Adv. Phys., 1969, 18, 41.
DOI:http://dx.doi.org/10.1080/00018736900101267
28.Elliot S. R.,; Philos Magn., 1977, 36, 1291.
29.DOI:http://dx.doi.org/10.1080/14786437708238517
30.Meaz, T.M. ; Attia, A. M. S. M ; Ata. A. E.; J.Magn.
Mater., 2003, 257, 296.
DOI:http://dx.doi.org/10.1016/S0304-8853(02)01212-X
31.Ghosh, A.; Phys. Rev. B., 1990, 42, 1385.
DOI:http://dx.doi.org/10.1103/PhysRevB.42.1388