Document Type : Research Article

Authors

1 Atomic Minerals Department for Exploration and Research, Department of Atomic Energy, Delhi, 110066, India

2 National Institute of Technology, Department of Physics, Jalandhar, Punjab, 144011, India

Abstract

In this paper we investigate the effect of lanthanum doping on structural, dielectric and electrical  properties  of lead magnesium niobate - lead titanate, 0.65Pb(Mg1/3Nb2/3O3)- 0.35PbTiO3 (x=0, 0.02, 0.05) ferroelectric ceramics. Dielectric and AC impedance spectroscopic measurements were carried out on pure and lanthanum doped PMN/PT ceramics over a wide temperature (30o- 450o C) and frequency interval (10 Hz-1 MHz). Pure and lanthanum doped Pb1-xLax[(Mg1+x/3Nb2-x/3)0.65Ti0.35(1-x/4)]O3, (x=0, 0.02, 0.05) ceramics were prepared by solid state reaction route using columbite precursor method. X-ray diffraction revealed tetragonal (P4mm) phase for pure PMN/PT ceramics and transition to pseudo cubic phase (Pm3m) was observed with increased lanthanum doping. The dielectric response of the lanthanum modified PMN/PT ceramics was interpreted in terms of modified curie weiss law. Modulus spectroscopy revealed the deviation of dielectric behavior from ideal Debye behaviour. Activation energies calculated from dielectric relaxation and modulus spectroscopy suggested that charge transport  processes are due to oxygen ion hopping.The AC conductivity of the PMN/PT ceramics initially increased for 2 mol% of lanthanum doping followed by a subsequent decrease with further 5 mol% of  lanthanum doping. The value of the activation energies calculated from the temperature dependance of ac conductivity was in the range from 1.20-1.48 ev which is due to doubly ionized oxygen vacancies. The overall structural, electrical and dielectric behaviour of  Pb1-xLax[(Mg1+x/3Nb2-x/3)0.65Ti0.35(1-x/4)]O3, (x=0, 0.02, 0.05) ceramics is correlated to the  relaxor nature induced by lanthanum doping. 

Keywords

1.Park S. E.; Shrout T. R.; J. Appl. Phys., 1997, 82,1804.
DOI:http://dx.doi.org/10.1063/1.365983

2.Shrout T. R.; Fielding Jr. J; Proc. IEEE, 1964,35, 711.

DOI: http://dx.doi.org/10.1109/ULTSYM.1990.171456

3.Cross, L.; Jang, S.; Newnham, R.; Nomura, S., Uchino, K.,
1980, 23, 187.

DOI:http://dx.doi.org/10.1080/00150198008018801

4.Pandit, P.; Wadhawan, V. K.; Gupta, S. M.; Smart Mater.
Struc., 2006,15, 653.

DOI:http://dx.doi.org/10.1080/00150198008018801

5.Pandit, P; Wadhawan, V. K.; Gupta, S. M.; Smart Mater.
Struc., 2007, 16, 1246.

DOI:http://dx.doi.org/10.1088/0964-1726/16/4/036

6.Noheda, B.; Cox, D. E.; Shirane, G.; Z.-G. Ye; Gao, J; Phys.
Rev. B., 2002,66, 054104.

DOI:
http://dx.doi.org/10.1103/PhysRevB.66.054104
7.Ye, Z. G.; Noheda B. ; Dong, M.; Cox, D.; Shirane, G.;
Phys. Rev. B., 2001,64,184114.

DOI:http://dx.doi.org/10.1103/PhysRevB.64.184114

8.Kiat, J. M.;, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert,
Calvarin G. ; Phys. Rev. B., 2002,65, 064106.

DOI:http://dx.doi.org/10.1103/PhysRevB.65.064106

9.Shaw J.C. ; Liu K. S.; I. N. Lin Scripta Metall. et Material,
1993, 29,981.

DOI: http://dx.doi.org/10.1016/0956-716X(93)90394-8

10.Blinc, R.. ; Dolinˇsek, J.; Gregoroviˇc, A.; Zalar, B.; Filipiˇc,
C.; Kutnjak, Z.; Levstik, A.; Pirc, R., Phy.Rev.Lett. 1999,
83,424

DOI:http://dx.doi.org/10.1103/PhysRevLett.83.424

11.Pirc, R.; Blinc, R; Phys. Rev. B., 1999, 60, 13470.

DOI:http://dx.doi.org/10.1103/PhysRevB.60.13470

12.Ghosh V J; Nielsen B; Friessnegg T.; Phys. Rev. B., 2000,
61,207.

DOI: http://dx.doi.org/10.1103/PhysRevB.61.207

13.Badillo, F.A.N.L.; Eiras, J. A.; Milton, F. P; Garcia, D;
Opt. Photonics J., 2012, 2, 157.

DOI: http://dx.doi.org/10.4236/opj.2012.23023

14.James A. R.; Srinivas K; Mater. Res.Bull, 1999, 8, 1301.

DOI:http://dx.doi.org/10.1016/S0025-5408(99)00127-0

15.James, A. R.; Priya, S. ; Uchino K., ; Srinivas, K; J. Appl.
Phys., 2001, 90, 3504.

DOI:http://dx.doi.org/10.1063/1.1401802

16.Gupta S. M.; Prasad N. V. ; WadhawanV. K.;
Ferroelectrics,2005, 326, 43.

DOI:http://dx.doi.org/10.1080/00150190500318222

17.Macdonald, J. R. (Eds); Impedance spectroscopy
Emphasizing Solid Materials and systems, John Wiley &
sons, 1987.

18.Johnscher A. K. (Eds); Dielectric Materials in Solids;
Chelsea :London 1983.

19.Swartz, S. L.; Shrout , T. R.; Mat. Res. Bull., 1982, 17, 1245.

DOI:10.1016/0025-5408(82)90159-3

20.Chou .X; Zhai. J; Jiang, H. ; Yao, X. J.; Appl. Phys., 2007,
102, 084106.

DOI:10.1063/1.2799081

21.Gupta, S. M.; Pandit, Pragya; Wadhwan, V.K; Mater. Sci. &
Engg. B., 2005, 120, 125.

DOI:http://dx.doi.org/10.1016/j.mseb.2005.02.013

22.Uchino K.; Nimura S., Ferroelectrics, 1982,216, 11.

23.Singh, G.; Tiwari, V. S.; Gupta, P. K; J. Appl. Phys., 2007,
107, 064103.

DOI:http://dx.doi.org/10.1063/1.3309745

24.S. Rachna. ; Bhattacharyya. S. ; Gupta, S. M; Mater. Sci. &
Engg. B., 2010, 175, 207.

DOI:http://dx.doi.org/10.1016/j.mseb.2010.07.029

25.Fayek M. K., Mostafa M. F. Sayedahmed F, Ataallah SS and
Kaiser M; J. Magn. Magn. Mater., 2000, 210, 189.

DOI:http://dx.doi.org/10.1103/PhysRevB.67.144519

26.Gopalan E. V.; Malini, K.A. ; Saravanan S.; , Sakthi Kumar
D.; Yoshida. Y.; Anantharaman M. R.; J. Phys. D: Appl.
Phys., 2008, 41.

DOI:http://dx.doi.org/10.1088/0022-3727/41/18/185005

27.Austin, I.G. ; Mott, M.F.; Adv. Phys., 1969, 18, 41.

DOI:http://dx.doi.org/10.1080/00018736900101267

28.Elliot S. R.,; Philos Magn., 1977, 36, 1291.

29.DOI:http://dx.doi.org/10.1080/14786437708238517

30.Meaz, T.M. ; Attia, A. M. S. M ; Ata. A. E.; J.Magn.
Mater., 2003, 257, 296.

DOI:http://dx.doi.org/10.1016/S0304-8853(02)01212-X

31.Ghosh, A.; Phys. Rev. B., 1990, 42, 1385.

DOI:http://dx.doi.org/10.1103/PhysRevB.42.1388