Theoretical Investigation on Occurrence of Unconventional Superconductivity in Mg_(1-x)T_xB₂ Compounds

D.S. Jayalakshmi^{1*}, M. Nasreen Banu¹, M. Sundareswari¹, D. Hemanand², E. Viswanathan¹

¹Department of Physics, Sathyabama Institute of Science & Technology, Tamil Nadu ²Department of Computer Science, Sri Ram Engineering College, Tamil Nadu

*Corresponding author: E-mail: jayalakshmi.physics@sathyabama.ac.in

DOI: 10.5185/amp.2019.0010 www.vbripress.com/amp

Abstract

The structural, bonding, magnetic, electronic, elastic and thermoelectric nature of superconducting material namely MgB₂, with hexagonal structure (space group is 191) are studied by first principle calculation. The optimized lattice parameters of MgB₂ are a=b=3.084289 Å and c= 3.51527 Å and the electron phonon coupling constant (λ), Debye temperature, critical temperature, Seebeck coefficient, electrical resistivity and the elastic constants (C₁₁, C₁₂, C₁₃, C₃₃, C₅₅) are calculated and agreed well with available outcome. To predict other possible superconducting materials belong to MgB₂ family, Mg is further doped with transition element Titanium (Ti) and analyzed. Copyright © VBRI Press.

Keywords: FP-LAPW, high Tc superconductor, hexagonal, elastic property, thermo electric property, debye temperature.

Introduction

As a superconducting material MgB₂ plays a major role in recent years due to its critical temperature, $T_c = 40K$ for binary compound. It has special features like, trouble-free structure and high transition (T_c) temperature [1]. Since the bonding between B-B is strong covalent results good electron phonon coupling factor which is liable for high value of transition (critical) temperature in MgB₂ compound [2, 3]. To prove the validity of our studies, initially a complete band structure calculation for MgB₂ and to propose a new possible superconducting material has executed. Here we have chosen the transition element Titanium (Ti) as a dopant due to its high conductivity. By doping Ti with Mg, it enhances the superconducting properties under temperature [4]. In this paper we have reported the optimized parameters of the hexagonal structured MgB_2 and $Mg_{0.5}Ti_{0.5}B_2$ with the space group 191(P6/mmm). The structural factors of $Mg_{0.5}Ti_{0.5}B_2$ compound initially predicted from MgB2 and the position parameters for Mg, B, and Ti are (0, 0, 0), (1/3, 2/3, 1/2) and (0, 0, 1/2) respectively.

Computational method

The methodology is executed by Full Potential Linearized Augmented Plane Wave scheme as employed in WIEN2K software code [5]. The Generalized Gradient - Approximation (GGA) parameter scheme has used to find exchange correlation potential [6]. Radius of Muffin tin spheres (RMT) is preferred due to its minimal leakage of charge from the core. The spin and non-spin polarization is performed with optimal K-points with minimum convergence for charge, forces and energy. The total energy is calculated by volume and pressure relation executed by Birch and Murnaghan equation of state [7].

The complete structural factors of the experimentally reported MgB₂ compound are optimized and compared. The calculated (electronic) specific heat parameter (γ) and Debye temperature are applied in a Mc'Millians formula, the transition temperature (T_c) was calculated for the MgB₂ compound. The a Mc'Millians formula is expressed as T_c = ($\Theta_D/1.45$) exp [- (1.04) (1+ λ) / (λ - μ ^{*}-0.62 μ ^{*} λ)] where, Θ_D - Debye's factor for temperature and μ ^{*} electron- electron interaction (μ ^{*} = 0.1) [8]. The lattice parameters and the positional parameters of Mg_{0.5}T_{0.5}B₂ are optimized by volume optimization, c/a optimization and position minimization.

Result and discussion

(a) Structural, electronic and magnetic properties of MgB₂ and Mg_{0.5}Ti_{0.5}B₂ Compounds

The first part of work is the optimized band structure calculation of MgB₂ compound to explore the physical, magnetic and electron transport property of the compound. The obtained results are tabulated in **Table 1**. To analyze the magnetism behavior, the spin-orbit coupling execution has been carried out. The diamagnetism behavior of the compound has revealed by the observed least magnetic moment value. The theoretical calculation of (electronic) specific heat coefficient (γ_{th}) is calculated by using the relation, $\gamma_{th} = (\pi^2/3)K_B^2N(E_F)$. Where, K_B is the Boltzmann constant. The (electron–phonon) coupling (λ) constant value is obtained by, $\lambda = (\gamma_{expt}\gamma_{th})$ -1 [9]. Then Density of States histograms and plot of band structures are

analyzed to explore the electron transport behavior over conducting nature of material shown in **Fig. 1** and **Fig. 2**. The band structure of MgB₂ and Mg_{0.5}T_{0.5}B₂ shows the motion of the electrons over the Fermi energy level, proves the conductivity and it gives that the conductivity range is higher in titanium doped MgB₂. The DOS in MgB₂ depicts more contribution arises from Boron; and in Mg_{0.5}Ti_{0.5}B₂ more contribution arises from Ti. **Fig. 1(c)** and **Fig. 2 (c)** shows Fermi surface of MgB₂ and Mg_{0.5}Ti_{0.5}B₂ respectively and it shows the electron cylinders at A point and sheets over K points implies it conducting phenomenon.

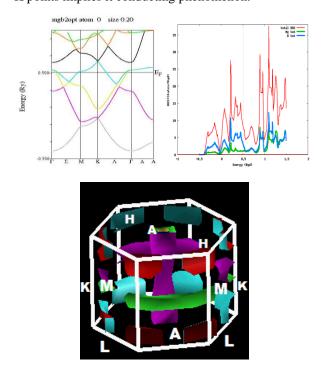


Fig. 1. $MgB_2(a)$ Band structure profile (b) DoS histogram (c) Fermi surface.

(b) Bonding and Mechanical properties of MgB₂ and Mg_{0.5}Ti_{0.5}B₂ Compounds

Density plots of electron (**Fig. 3**) and the inter atomic distances are examined to know the bonding between the atoms in a compound, which is expressed as (Mg, Mg) is 5.2885 a.u, (B, B) is 3.3651 a.u, and (Mg, B) is 4.7282 a.u for MgB₂ and (Mg, Mg) is 6.9912 a.u, (Mg, Ti) is 51793 a.u and (Ti, B) is 4.034 a.u for Mg_{0.5} Ti_{0.5}B₂. The **Fig. 3a** depicts the bonding between Mg and B is ionic and agreed with the literature. **Fig. 3b** shows that covalence is exists in between Boron atoms by distributing uniform contours that around B-B atoms; Ionic bonding is exist in between B and Mg (Ti).

The universal anisotropic factor is expressed as, $A^{U} = 5 G_{v} / G_{R} + (B_{v} / B_{K}) - 6$. If A=0, then there is no anisotropic in the compound. If A \neq 0, then the compound is a high anisotropic nature. The elastic modulus values; Poisson's ratio (σ), Young's (E), Shear (G) and Bulk (B) are offered in **Table 1**. By our study the compound MgB₂ and MgTiB₂ exhibit a high anisotropic nature. To be aware of the brittle (or) ductile nature, the Pugh's criterion (G/B) is provided. If G/B is more than (>) 0.57, represents brittle nature or it represents ductile nature [**15**]. Here the G/B (ratio) for MgB₂ is 0.5152, is ductile in nature and for Mg_{0.5}Ti_{0.5}B₂ the G/B ratio is 2.6014, is brittle in nature therefore by doping a compound it changes its mechanical property.

Table 1. The optimized structural, magnetic, electronic and elastic parameters of MgB_2 and $Mg_{0.5}Ti_{0.5}B_2$ compounds.

Parameters	MgB ₂	Mg0.5Ti0.5B2 3.6996	
Lattice parameter (a) Bohr	3.0843(3.0834 ^[10] ; 3.087 ^[11])		
Lattice parameter(c) Bohr	3.5153 (3. 5213 ^[10] ;3.524 ^[11])	5.48155	
Fermi energy (E _F) Ryd.	0.5068	0.44238	
DOS [N(E _F)] Ryd.	8.42 (8.93 ^[10] ; 9.98 ^[11])	8.10324	
(Electronic) Specific (γ) heat (mJ/(mol cell K**2)	1.46 (1.6 ^[10] ; 3.06 ^[11])	1.4038	
Electron phonon coupling λ	1.10 (1.04 ^[10] ; 1.84 ^[11])	0.6767 (approx.)	
Critical temperature (T _c)	55.0303 K (39.53 K ^[10] ; 38.6 K ^[11])	31.57 K	
Debye temperature, θ_D	863.65 K (750 K ^[10])	1193.97 K	
C11 (GPa)	321.276 (524 ^[12] ; 433.85 ^[13])	351.0252	
C12 (GPa)	157.786 (58 ^[12] ; 68.86 ^[13])	-15.7509	
C13 (GPa)	50.459 (33 ^[13] ; 44.61 ^[14])	-8.0458	
C33 (GPa)	225.444 (243 ^[12] ; 265.30 ^[13]	179.4437	
C55 (GPa)	55.852 (85 [12]; 74.06 [13])	347.0476	
Bulkmodulus (GPa) Bvoigt/BREUSS/BHILL	153.94/141.330/147.629	90.67/82.651/ 886.759	
Shear modulus (GPa) G _{VOI} /G _{REUSS} /G _{HILL}	79.311/72.202/72.756	236.385/194.171/ 215.278	
Young's modulus (GPa) Y _{VOI} /Y _{REUSS} /Y _{HIL}	203.051/185.087/194.071	379.806/326.686/ 353.472	
Poisson's coefficient, Pvoi/PREUS/PHIL	0.250/0.281/0.280	-0.196/-0.158/ -0.179	
Magnetic moment, μ_B	0.00036	-0.7223	
Pugh Ratio (G/B)	0.5152	2.6014	
A ^U	0.5349	0.1892	

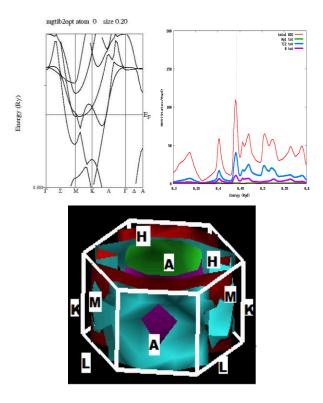


Fig. 2. $Mg_{0.5}Ti_{0.5}B_2$ (a) Band structure profile (b) DoS histogram (c) Fermi surface.

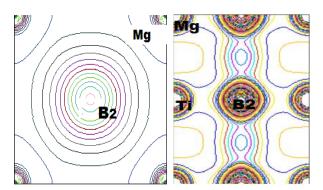


Fig. 3. Electron density plot a) MgB₂b) Mg_{0.5}Ti_{0.5}B₂.

(c) Thermoelectric properties of MgB₂ and Mg_{0.5}Ti_{0.5}B₂ compounds

Table 2. Thermoelectric parameters of MgB_2 and $Mg_{0.5}Ti_{0.5}B_2$ compounds.

	Conductivity (σ)		Resistivity, $\rho \mu \Omega$		Seebeck	
	$\Omega^{-1}m^1$		cm		coefficient	
	MgB_2	Mg _{0.5} Ti	MgB ₂	Mg _{0.5} Ti _{0.5}	MgB_2	Mg _{0.5} Ti ₀
		$0.5B_2$		\mathbf{B}_2		.5 B 2
100	2.2919	6.0112	4.363	0.1663	1.619	0.26222
200	1.6758	2.5633	5.967	3.90124	4.525	0.26206
300	1.2100	1.0022	8.2640	0.9978	6.915	0.25771
			$(8.7)^4$			2
400	5.8016	3.735	1.7236	0.2677	8.5179	025619
500	3.4224	8.2188	2.9219	0.1267	9.4810	0.2573
600	4.0183	1.0684	2.4888	0.9359	1.0031	0.2604
700	6.2928	1.00364	1.5890	0.9637	1.0350	0.2646

BoltzTraP code is used to analyze the thermoelectric properties [16]. The given table explains the change in conductivity and resistivity with respect to temperature in its corresponding Fermi energy states. At 300 K the conductivity nature of both materials under study is same, hence in forth this study used to predict novel superconducting materials and the same proved by theoretical values. At below the room temperature $Mg_{0.5}Ti_{0.5}B_2$ exhibits more conductivity than MgB_2 . Here, in novel material namely $Mg_{0.5}Ti_{0.5}B_2$, 'S' is very less and ' σ ' is high than parent compound namely MgB_2 .

Conclusion

The structural, magnetic, elastic and electronic properties of a doped material $Mg_{0.5}Ti_{0.5}B_2$ are predicted. Pugh's ratio shows that the mechanical property of MgB_2 inverted into brittle by doping Ti with Mg in 50%. Both the compounds have high anisotropy bonding nature and the same is proved by using the universal anisotropy index (A^U). The conductivity nature of both the compounds is similar at room temperature and $Mg_{0.5}Ti_{0.5}B_2$ reveals more conductivity at low temperature. The more contribution towards DOS arises from Boron in MgB_2 and from Titanium in $Mg_{0.5}Ti_{0.5}B_2$. In both the compounds the covalence is exist in between the boron atoms and ionic nature is exist in between Boron with other atoms.

Acknowledgement

The authors are acknowledged DST-FIST (SR-FST-PSI-193/2015).

References

- Cristina Buzea; Tsutomu Yamashita; Supercond. Sci. Technol., 2001, 14, 115.
- Yadav, Vaishali; Shukla, Rimpy; Sharma, Ritu; Sharma, Krishna S.; IIS Univ. J. Sc. Tech., 2017, 6, 11.
- Tomoyuki Naito; Takafumi Yoshida; Hidehiko Mochizuki; Hiroyuki Fujishiro; Ritwik Basu; Jerzy A. Szpunar; *IEEE Transactions on Applied Superconductivity*, 2016, 26, 15944457.
- 4. John M. Rowell; Supercond. Sci. Technol., 2003, 16, R17.
- Blaha P.; Schwarz K.; Madsen G.; Kvasnicka D.; J. Luitz WIEN2k | An Aug-mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, 2001.
- John P. Perdew; Burke K.; Ernzerhof M.; Phy. Rev. Letters, 1997, 78, 1396.
- 7. Birch F; Physical Review, 1947, 71, 809.
- Rajagoplan M.; Selvamani P.; Vaitheeswaran G.; Kanchana V.; Sundareswari M.; Solid State Communications, 2001, 120, 215.
- 9. Jayalakshmi D.S.; Sundareswari M.; Ind. J. of Phys., 2015, 89201-208.
- Ravindran P.; Vajeeston P.; Vidya R.; Kjekshus A.; Fjellvag H.; Physical Review B, 2001, 64, 224509.
- Sharma, Devina; Kumar, Jagdish; Vajpayee, Arpita; Kumar, Ranjan; Ahluwalia, P.K.; Awana, V.P.S.; *J. Sup. & Novel Mag.* 2011, 24, 1925.
- 12. Hua-Zhong G. et al; Chin. Phys. Lett., 2005, 22, 1764.
- 13. Ke Wang Xiapzhi; Wu Weiguo; Li Rui Wang; Qunyi Wei; J. Supercond. Noval Magn., 2015.
- 14. Loa, I.; Syassen, K.; Solid State Communication, 2001, 118, 279.
- Sugan Harish R.; Jayalakshmi D.S.; Viswanathan E.; Sundareswari M.; *Modern Physics Letters B.*, 2016, 30, 1650178.
- Madsen G.K.H; Singh D.J.; BoltzTraP. Computer Phys. Comm. 2006, 175, 67.