Dinesh Selvakumaran; Anandan Manickam; Gopalakrishnan Ravi; Gohulkumar Muthusamy; Barathan Seshatri
Abstract
Highly crystalline Mg2SnO4 nanocubes were successfully synthesized using a facile hydrothermal method. Further activated carbon was loaded with Mg2SnO4 nanoparticles in order to enhance the photocatalytic performance. Photocatalytic performance of Mg2SnO4 nanocubes and activated carbon loaded Mg2SnO4 ...
Read More
Highly crystalline Mg2SnO4 nanocubes were successfully synthesized using a facile hydrothermal method. Further activated carbon was loaded with Mg2SnO4 nanoparticles in order to enhance the photocatalytic performance. Photocatalytic performance of Mg2SnO4 nanocubes and activated carbon loaded Mg2SnO4 nanocomposites were examined by methyl green and methylene blue dye degradation under the exposure of UV light. However, results suggest that activated carbon loaded Mg2SnO4 nanocomposites has significantly enhanced the photocatalytic performance over Mg2SnO4 nanocubes. It is assumed that better photocatalytic activity is caused by the higher specific surface area of activated carbon loaded Mg2SnO4 nanocomposites. Furthermore, cyclic voltammetry was used to analyze the electrochemical properties of the samples. Results indicate that activated carbon significantly enhanced the electrochemical properties of Mg2SnO4 nanoparticles. Copyright © VBRI Press.
M. Kanakadurga; S. R. Murthy; Arya Das; Rakesh K. Sahoo; Saroj K. Singh
Abstract
ZnO nano-platelets have been prepared using a high pressure reactor via hydrothermal route. The as-formed fine platelets morphology of the as-synthesized powder was confirmed from the scanning electron microscopy (SEM) images. The elemental analysis using energy dispersive X-ray (EDAX) analysis indicated ...
Read More
ZnO nano-platelets have been prepared using a high pressure reactor via hydrothermal route. The as-formed fine platelets morphology of the as-synthesized powder was confirmed from the scanning electron microscopy (SEM) images. The elemental analysis using energy dispersive X-ray (EDAX) analysis indicated the presence of Zn, O, Na and Cl which confirms the presence of ZnO as major and NaCl as the minor phase. The precipitation of this minor phase after growth and catalytic induction in nano-platelet (NP) morphology during growth has been elucidated. The electrochemical performance of this as-synthesized powder is quite promising. Additionally, the effect of this minor NaCl phase in changing the ionic equilibrium of the electrolyte in capacitance measurement has been analyzed.